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Despite the importance of attention in user performance, currentmethods for attention classification donot allow to discriminate

between different attention types.We propose a novel method that combines thermal imaging and eye tracking to unobtrusively

classify four types of attention: sustained, alternating, selective, and divided. We collected a data set in which we stimulate these

four attention types in a user study (N = 22) using combinations of audio and visual stimuli while measuring users’ facial

temperature and eye movement. Using a Logistic Regression on features extracted from both sensing technologies, we can

classify the four attention types with high AUC scores up to 75.7% for the user independent-condition independent, 87% for

the user-independent-condition dependent, and 77.4% for the user-dependent prediction. Our findings not only demonstrate

the potential of thermal imaging and eye tracking for unobtrusive classification of different attention types but also pave the

way for novel applications for attentive user interfaces and attention-aware computing.
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1 INTRODUCTION
A common, though often incorrect, hidden assumption underlying howwe currently design interactive systems

is that, during the interaction, the user focuses all of their attention on the interaction with the system. As a

consequence, considerable effort in the research and development of ubiquitous computing systems has been placed

on supporting users while they perform single-focus tasks (e.g., [16, 21]). However, given the multitude of devices

and applications constantly fighting for users’ attention through interruptions and notifications, single-focus

interactions are the exception rather than the rule [69, 70].

This phenomenon has led economists to frame the problem in terms of an attention economy, where attentional
resources are the currency and actors are competing for consumers’ attention [11, 18]. A fundamental concept in

this idea is that, similar to other economic resources, attention is a limited resource. Further, attention is strongly in-
fluenced both by internal stimuli (e.g. rememberingwhere you left your keys causes your attention to shift, or feeling

motivated to read a book leads to amore focused reading experience) and external stimuli (e.g. hearing a dog bark be-
hind you causes you to turn around orwriting an essaywhile being observed by your teacher keeps your eyes on the

exercise at hand). Therefore, the context around the interface affects howmuch attention is paid to the interaction.

To further complicate matters, attention itself is a complex concept, one that even psychologists struggle to

conceptualize [64]. Early studies suggested that there are several levels of attention insteadof a unitary one, due to its

complexnature involvingmemory, behavior andconsciousness [30, 41, 43, 51, 63].Onemodel that emerged fromthis

literature is Sohlberg and Mateer’s Clinical Model of Attention [59]. This hierarchical model discriminates between

people’s ability tomaintain attention towards a single stimulus (sustained and focused attention); to switch attention
betweendifferent stimuli (alternating attention); to pay attention to one stimuluswhile inhibiting others (selective at-
tention), and to pay attention tomultiple stimuli simultaneously (divided attention). Thismodel highlights two chal-

lenges: quantifying attention (howmuch attention) and qualifying the nature of attention (what type of attention).

Prior work on attention has shown that our well-being is tied strongly to our ability to manage our attention

successfully, for example, we know that multitasking hinders performance [36]. Such known issues create op-

portunities to design interactive systems that monitor and actively help users to manage their attention. The

vision of pervasive attentive user interfaces encapsulates this well, stating that interfaces could “adapt the amount

and type of information based on [users’] current attentional capacity, thereby simultaneously optimizing for

information throughput and subtlety. Future interfaces could trade-off information importance with users’ current

interruptibility level and time the delivery of information appropriately” [8].

To realize this vision, interfaces that attempt to leverage the users’ attention must accomplish two tasks: (1)

identify the locus of attention and (2) characterize the nature of the current attentional state. While the locus of

attention is typically considered to be equivalent to gaze direction, this is not always the case due to the diverse

nature of attention orienting, which is classified as overt or covert [72]. In overt attention, the person selectively

attends to a source of information by moving their eyes to point in that direction [50]. However, humans do not

necessarily direct their eyes towards their area of focus. During covert attention, a corresponding shift in attention

is not followed by a corresponding shift in gaze direction [17], e.g., when a person has a conversation with a friend

while looking at their mobile phone [41], or when eavesdropping on a conversation while typing up an email in

an open office environment. Therefore, even though eye-tracking data can be very informative, it is essential to

understand the limits of the gaze point as a sole representation of the locus of attention.

In this paper, we address the limits of eye-tracking for attention detection by proposing its combination with

thermal imaging in order to classify the various attention types by stated in Sohlberg andMatter’s Clinical Model of
Attention. The Clinical Model describes attention as amodel based on the degree of focus, consisting of lower funda-

mental levels and higher levels [59]. The lower level includes focused and sustained attention,while the higher levels
includes selective, alternating, and divided attention [30, 41, 59]. The Clinical Model further describes attention as a

multidimensional cognitive capacity, which means that attentive tasks need different levels of cognitive load to be
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achieved [41]. The findings of recent work in HCI demonstrated the ability to unobtrusively quantify cognitive load

using thermal imaging and temperature sensors [2, 65, 75]. Our paper, therefore, builds on the ability to use thermal

input as a method of measuring different levels of cognitive loads and the knowledge that these different attention

types require different cognitive capacities. By combining this concept with the ability to detect overt attention reli-

ablywell through eye-tracking,we explore the novel combination of eye-tracking and thermal imaging for attention

classification. To explore this combination,we collected a dataset in a user study designed to elicit different attention

types using different stimulus modalities, in controlled and (semi-)naturalistic tasks. We build on the opportunity

that eye-tracking can reveal the locus of attention, and thermal imaging can give us an estimate of cognitive load.

Together, this allows us to paint a better picture of users’ attentional state. We hypothesize that by combining these

modalities, we are able to classify different attention types according to the Clinical Model. We present our results

regarding the applicability of our approach to differentiate attention types and suggest directions for use cases

and future steps towards attention-aware systems. Specifically, in this paper, we contribute the following:

• Wepropose a novel approach for classifying attention types bymonitoring users’ gaze and facial temperature.

• We propose a set of features used for classification, along with a variety of classifiers that researchers could

adopt to build systems that can differentiate between the attention types.

• Wecollected empirical data from22participantswhile exposed to various stimuli eliciting four attention types.

Weevaluated theperformanceof thebuilt classifiersusing the collecteddata.Our approach classifiedattention

typesbasedon thermal andgaze features andproducedAUCup to87%andanaverageof 80.3% for all classifiers.

2 RELATEDWORK
In the past decades, many scientific fields have been interested in understanding the processes behind human

attention, from its measurement to its modeling. A pre-condition for this is the ability to sense and characterize

attentional states in near real-time, and prior work has explored the use of various sensors and algorithms in at-

tempts to achieve this. In this section, we discuss the background theory of attention, technology-based approaches

for sensing attention, and existing algorithms for classifying attention.

2.1 Models of Attention
The vast body of research on theories of attention can be split loosely into theories of focused attention and theories

of divided attention, with few studies attempting to bridge the gap between the two (e.g., [49]). Whereas theories

of focused attention are grounded on visual selection and unintentional processing, theories of divided attention

revolve around the issue of capacity limits [19, 29]. These differences in theoretical grounding have led to the

evolution of different attention models in the field of psychology. In our work, we employ Sohlberg andMateer’s

Clinical Model of Attention [59] as it has been deemed to be one of the most comprehensive models [4]. The Clinical

Model describes attention as a model based on the degree of focus, consisting of lower fundamental levels and

higher levels [59]. The lower level includes focused and sustained attention, while the higher levels includes selective,
alternating, and divided attention [30, 41, 59]. In other words, attentive tasks need different levels of cognitive load
to be achieved [41]. The attention types introduced in the model are:

Focused attention. The ability to respond discretely to specific visual, auditory, or tactile stimuli.

Sustained Attention. The brain can discretely respond to specific auditory, tactile, or visual stimuli for a

prolonged period. Reading a book in a deeply focused state is an example of sustained attention.

Alternating Attention.Happens when we switch focus from one task to another or from one part of the task

to another, regardless of different cognitive demands between them. Examples include: listening to a lecture while

taking notes, or reading a recipe while cooking.
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Selective Attention. The ability of the brain to focus on a specific stimulus while inhibiting others. A prime

example of selective attention is called the Cocktail Party Effect [33], which describes our ability to selectively

attend to the voice of one person while minimizing other voices and noise.

Divided Attention. The brain divides its attention between different stimuli simultaneously. Examples include:

playing a mobile game while having a conversation or, one that we do not recommend, texting while driving.

2.2 Current Approaches to Classify Attention
A crucial step in building attentive systems lies in the ability to quantify users’ attentional states. However, as

changes in these states happen inside users’ minds, we can only measure attention indirectly through users’

behaviors and physiological signals, leading to the development of technologies potentially offering insights about

the users’ attention states. These technologies vary in their levels of obtrusiveness.

Previous works have explored a variety of sensors for measuring attentional states, including electroencephalog-

raphy (EEG) [1, 32, 37, 39], electrooculography (EOG) [32], electrocardiography (ECG) [9], and electromyography

(EMG) [52]. These sensors have been shown to provide high accuracy in recognizing states but are obtrusive in

nature (requiring users to wear a device or have electrodes attached to their skin), and therefore cumbersome for

daily use. For instance, Liu et al. [39] were able to distinguish between attentive and inattentive states with an

accuracy of 76.82% using EEG but required the placement of electrodes on participants’ heads. On the other hand,

researchers have employed less unobtrusive approaches such as functional Magnetic Resonance Imaging (fMRI),

commonly used to reveal aberrant brain activity, to measure attentional states [26, 40, 45]. For example, Moisala

et al. [45] measured human brain activity during single-tasking and dual-tasking using fMRI, looking for activation

in the medial and lateral frontal regions of the brain. Their results highlight the relationship between different

attentional demands and levels of brain activity associated with sustained and divided attention. Though able to

show differences in attention states, fMRI remains impractical for daily use, in terms of costs and practicality.

Recent work has explored unobtrusive contactless sensing approaches, including eye tracking and temperature

sensors. Eye tracking is a common technique to investigate visual attention as we tend to fixate on objects that have

drawnour attention or relevant to the task thatwe are attending to [41, 47, 48]. Throughour visual attention,weonly

‘see’ what we are paying attention to, as our cognitive system allocates sufficient resources for visual processing

to avoid overloading. Because we receive a large amount of information through our eyes, this mechanism helps

us to manage what gets processed. Eye movements are an important part of visual attention and are primarily

comprised of fixations (stationary phase) and saccades (rapid, ballistic eye movements phase). Previous works have

long explored how eye movement features can help uncover psychological states and recognize activities [60, 68].

Eye tracking is a powerful tool for understanding human attention as it can measure both the frequency of eye

movements and the location of the gaze point [5, 6, 14, 20, 41]. While researchers often use gaze point as a proxy

for the locus of attention, this is not always the case due to the diverse nature of attention orienting—classified as

overt or covert [72]. Therefore, even though eye tracking data can be very informative, it is essential to understand

the limits of the gaze point as a sole representation of the locus of attention.

Thermal imaging and temperature sensors have been explored as a means of understanding users’ mental

states [2, 27, 35, 53, 65], for instance, thermal imaging has been used to detect several states including stress,

guilt, fear [28]. Our work, however, builds specifically on Abdelrahman et al.’s Cognitive Heat [2] and Zhou et al.’s
Cognitive Aid [75], which demonstrate the relationship between facial temperature and cognitive load estimation,

in which the authors employ the use of thermal imaging as a way to unobtrusively detect changes in cognitive

load in real-time. To elaborate, the authors found substantial changes in facial temperatures upon the activation

of the ANS when exposed to the stimulus, specifically between the nose and forehead regions. This seminal work

gave rise to developing thermal-based activity tracking, which further facilitates new applications in the field of

cognition-aware computing. Wearable variations have also been developed using the same concept. For example,
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Tag et al. [65] presented early work on the use of facial temperature to measure attention; demonstrating the ability

to measure attention using IR temperature sensors. However, their focus was attention level rather than type.

Similarly, Zhou et al. [75] explored the use of thermal sensors to detect mental workload, demonstrating the ability

of such sensors to detect when a user is currently performing a task.

Table 1. Summary of existingWork on attention state classification.

Sensors: Features Classifier Attention States Accuracy
Software Interaction:

Haar wavelets On/off

task entries of

participants [44]

Linear SVM Primarily attentive 82.8%

Primarily attentive-short inattentive periods

Primarily inattentive with short attentive

Primarily inattentive

Eye tracking and inertial

sensor: Iris movement

and head rotation [10]

G(GA)-SVM Attentive 93.10%

Non-attentive

Kinect: Head angle and

displacement, body lean,

Face deformation and 2D

gaze points [74]

Decision Trees High attention 75.30%

Medium attention

Low attention

The variety of sensors discussed above opened the opportunity to use machine learning techniques to classify

users’mental states and to build systems that adapt to these states [56]. Table 1 summarizes recentwork on attention

classification throughmachine learning, showing that cognitive ability can be estimated bymeasuring the attention

level of users while performing activities.Whereas there have been initial efforts to usemachine learning to classify

attention primarily into attentive and non-attentive states with a maximum accuracy of 93.10%, no work has

attempted to classify attention according to the four types of attention outlined in Sohlberg andMateer’s Clinical

Model of Attention [59].

2.3 Summary & Research Direction
In summary, there are two clear limitations from the existing literature on recognizing attention types. First, the

sensors employed for measuring attention tend to be obtrusive and therefore not appropriate for the development

of interactive systems. Second, works to date employed models that oversimplify attentional processes, as a binary

variable or as a one-dimension continuous signal.

In this paper,we address this research gap by using the combination of twounobtrusive sensors—thermal imaging
and remote eye tracking, fromwhich we can build classifiers for recognizing the four types of attention outlined in

Sohlberg and Mateer’s Clinical Model of Attention [59]. To our knowledge, this is the first work that has attempted

to differentiate between four attention types (sustained, alternating, selective, divided). Our combined approach

exploits the fact that each attention type requires different cognitive resources [41] and visual direction [20].

To elaborate, our novel approach leverage two ways in which attentive states are manifested in our physiology

to measure and classify attention effectively. First, attention is related to the allocation of cognitive resources [41].

This process strongly correlates with changes in the blood flow, which is reflected in changes in the temperature

distribution in our skin [2, 57, 58]. In a seminal work, Abdelrahman et al. [2] explored the use of thermal imaging to

measure cognitive load, inwhich the authors relied on how the activation in theAutonomicNervous Systems (ANS)

due to an increase in cognitive load is reflected in the facial temperature. Using the same ideology, we hypothesize

that changes in attentive states will also lead to a change in cognitive load levels that are observable in facial

temperature patterns measured with a thermal camera. Our hypothesis is built upon the fact that different attentive
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states require different levels of cognitive load [41]. Informed by the literature, we estimate cognitive load using the

nose-forehead differential [2, 28]. Also, we explored the effect of different attentive states on the user’s cheeks, as

previouswork [28] highlighted the usage of cheeks as state indicator. Second, when engaging in overt attention, the

gaze point—which we can easily measure with eye-tracking—is a reasonable estimate of the locus of attention [20].

Further, low-level statistical features of eye movements are also indicative of cognitive load levels, which can be

useful for an attention classifier (e.g. [73]).

These physiological properties present an opportunity for the design of pervasive attentive user interfaces.

Both eye movements and facial temperature patterns can be unobtrusively captured with remote eye trackers and

thermal imaging cameras, particularly considering that the face is the most often exposed part of the user’s body.

Moreover, recent advances in both eye-tracking and thermal imaging have made it cheaper and more accessible

than ever to capture this information without the need to augment the user, but rather the environment.

In the following sections, we present the data collectionwith a detailed description of the tasks used for attention

elicitation (Section 3.1). We hypothesize that the higher-level attention types (selective and divided) will result in

a more significant temperature difference. To explore this hypothesis, we conducted a user study to elicit attention

types using the combination of audio and video stimuli, while recording the gaze and thermal data (Section 3.2).

We then present our methodological approach to analyze the collected data set, including statistical analysis,

feature extraction, and classification. In Section 5, we report the results from different classification approaches

(user-dependent, user-independent (condition dependent) and user-independent (condition independent), showing

the applicability of thermal cameras and eye tracker as unobtrusive sensors to classify attention. Lastly, we discuss

how the findings of our work can be applied and present directions in the future work section.

3 DATA COLLECTION
Our goal in this paper is to build a classifier that is able to distinguish between attention types based on facial thermal

imaging and eye-tracking data. To train and evaluate this classifier, we collected a dataset in which we recorded the

eyemovements and the temperature of facial features (nose, forehead, left cheek, and right cheek) of 22 participants

as they completed tasks designed to elicit four types of attentional states. The tasks were inspired by the literature

on attention in psychology.We used a repeated-measures design, where all participants performed four sets of tasks

with different stimuli.We counterbalanced the order of the tasks.We created variations of each stimulus to elicit four

typesof attention in theClinicalModel ofAttention— sustained, selective,alternating anddivided, for a total of 16 tasks
(4 attention types× 4 types of stimuli).Wedidnot include focused attention, aswe are interested in the attentionover

prolongedperiods. Further,we includedabaseline task (detailed inSection3.3) at thebeginningof theexperiment.All

content used during the study was in English, and all participants recruited were proficient in the English language.

3.1 Tasks
We used a combination of tasks from the attention elicitation literature and developed a series of tasks to elicit

different attention types starting with Stroop conditions as a reference task, followed by more naturalistic tasks

that involved a combination of visual- and audio-based stimuli. For the baseline task, we asked the participants to

relax while listening to white noise. We used the baseline task to capture and record the participants’ temperatures

at rest, which serves as a point of comparison with the other tasks [2]. Figure 1 illustrates the remaining tasks

used in the study. We published a playlist with the stimuli online
1
, for reproducibility purposes. We displayed the

tasks in full screen for 3 minutes, and conditions without a visual stimulus contained a white background. For

consistency, we primarily used selected TED Talks
2
for the content of the tasks. In audio-based tasks, we extracted

the audio from the videos, while in the visual tasks, we used the transcripts of the talks.

1
https://bit.ly/2LyZWay

2
https://www.ted.com/talks
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Fig. 1. Illustration of the (conditions) visual, audio-visual and stroop stimuli used to stimulate the four different attention types.

Stroop Tasks
The Stroop test is a classic Psychology task for eliciting selective attention [34, 62]. In the typical test, users are

asked to name the color of the font in which words are written. The difficulty of the task lies in the fact that the

words displayed correspond to a different color to the one inwhich they are coloredwhile the user selectively attends
to the color of the font. For example, in the classic experimental task, the word ‘RED’ would be colored in blue, and

the participant must reply ‘Blue’ while ignoring the fact that the word itself corresponds to a different color. For

our study, we created three variations of the Stroop test to elicit the remaining attention types, described below:

Sustained Stroop: We first created a simplified variation of the Stroop test to elicit sustained attention, where we

retained a single source of information. We showed color names written in their own color and asked participants

to read it aloud. For example, the word ‘green’ would appear colored in green, and participants were asked to say

‘green’. This effectively removed the challenge of the task allowing the participant to focus on reading the words,

therefore maintaining sustained attention.

Alternating Stroop: In this variation of the Stroop test, the display was split into two halves. Each half had a

sustained Stroop test variation, and participants had to alternate between the two halves, spending 45 seconds

in each half.

Selective Stroop: We used the original Stroop test [62] as the selective Stroop test where text and color are

presented differently. For example, the word ‘green’ would appear colored in blue, and the participant had to say

‘blue.’ Participants, therefore, have to ‘selectively’ choose between the two.
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Divided Stroop: Wereused the Stroop test variation introduced byEidels et al. [15] to elicit divided attentionwhere

participants are directed to attend to both word and color. The task included all four combinations of the words,

RED and GREEN, and the ink colors, red and green. The participants are asked to respond to ‘redness’ in the Stroop

stimulus, regardless of whether the ‘redness’ comes in the word (RED), the color (red), or both (RED in red). Hence,

the participantmust attend to the color and to theword (i.e. divide attention across the Stroop stimulus components).

Audio Tasks
Sustained Audio: This task used a single audio file of a TED talk speech to which participants were asked to

listen attentively.

Alternating Audio: To simulate a group conversation, we used two audio sources, which alternated between

being on and off every 45 sec. We used the same topic to mimic the real-life example of a group conversation.

Selective Audio: We simulated the Cocktail Party effect [33], where we combined audio of a speaker with the

audio of a cocktail party. Participants were asked to attend to the speaker selectively.

DividedAudio: Inspired byGardiner et al. [22] to elicit divided attention, participantswere asked to listen to a pre-
sentation talkwhile listening to and reporting high, low, ormedium tone sequences by saying the tone level out loud.

Visual Tasks
Sustained Visual: A single panel of text was displayed, and participants were asked to read the text as it appeared.

Alternating Visual: We divided the screen into two panels, which we further subdivided into two parts. The

text first appeared in the left panel for 45 sec and then alternated to the right panel, the text then alternated back

to the bottom half of the first panel and lastly alternated to the bottom half of right panel. Participants are asked

to read the text displayed in the active panel.

Selective Visual: A stream of text was displayed in a highlighted region in the middle section of the screen from

left to right. A stream of text also flowed upwards in the background. Participants were asked to read the text in

the highlighted region selectively. This task was inspired by a news ticker (also called slide) that typically appears

at the bottom of TV channels.

Divided Visual: In this task, we augmented numbers into a text transcript. We asked participants to read the

text while performing mental addition on the numeric values that appeared in the text, e.g. twenty, five, etc. This

forced the participants to divide their attention between the text itself and the mental arithmetic task.

Audio-Visual Tasks
Sustained Audio-Visual: For this task, we had a single video running from a selected top TED talk.

Alternating Audio-Visual: Similar to the Alternating Visual task, the screen was divided into two panels and two

videos played alternatively in the two panels. The first video played for 45 seconds and alternated to the second

panel. This alternating process repeats twice.

Selective Audio-Visual: Two videos were displayed, one embedded in the other, as shown in Figure 1. Participants

were asked to selectively attend to the video with the talk that was displayed in the middle of the screen. The larger

video acted as a cocktail party like noise [22].

Divided Audio-Visual: Inspired by Gardiner et al. [22] to elicit divided attention and similar to the Divided Audio

task, participants were asked towatch a videowhile listening to and reporting high, low, ormedium tone sequences.

Additionally, we added an appearing “X” in Red, and the user was asked to say "X" out loud when the symbol

appears to elicit attention on divided audio-visual type stimuli.

3.2 Experimental Setup
Figure 2-Left illustrates our experimental setup, consisting of a commercial Tobii EyeX eye tracker

3
operating with

frequency of approximately 55 Hz, connected via USB. The eye tracker provided the gaze x- and y-coordinates on

3
https://tobiigaming.com (recent firmware upgrade enabled increased frequency to 70Hz)
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Fig. 2. Left: Experimental setup consisting of thermal camera and eye tracker facing the participant. Right: The facial features
being monitored by the thermal camera (forehead, nose, left cheek, right cheek and chin).

the screen. We attached the eye tracker to a 24" screen and placed an Optris PI450 thermal camera
4
mounted on a

tripod 1m away from the participant behind the screen. The camera has an optical resolution of 382×288 pixels, has

a frame rate of 80 Hz, and measures temperatures between -20
◦
C and 900

◦
C, with a thermal sensitivity of 0.04

◦
C.

Further, the camera captured wavelengths in the spectral range between 7.5µm and 13µmwith a 38
◦× 29

◦
field

of view. The output of the camera encodes temperature information with 16-bit color values. Further, we developed

a system to display the stimuli (tasks) for each test in a counterbalanced order using Latin square that records both

streams of data. The Optris PI connect software
5
used with the camera has a built-in annotation function, using

the so-called measure areas of 10×20 pixels. We annotated the regions of interest including forehead, nose and

cheeks, as depicted in Figure 2-Right. Additionally, the Optris PI connect has a built-in save option, that stores

the mean temperature values of the annotated regions in CSV files.

3.3 Participants & Procedure
We recruited a total of 24 participants, and discarded 2 participants due problem with eye-tracking calibration. The

remaining 22 participants in our final data set consisted of 14Males and 8 Femaleswith an average age of 20.45 years

(SD = 1.14), recruited through universitymailing lists. Upon arrival, participants were asked to sign a consent form

and were informed about the aim of the study. We first asked participants to relax for 5 minutes while listening

to white noise (relaxing sound of ocean waves) as the baseline task. This allowed us to collect their physiological

data in a state of relaxation. Following, we presented the different tasks, 16 tasks in total for 3 minutes each. We

explained each task to the participants before starting the task. The order of the tasks was counterbalanced using

Latin squares. After each task, we asked participants to complete a NASA-TLX [24] questionnaire to assess the

perceived cognitive load. The study lasted approximately 85 minutes (SD = 10.25). During the entire experiment,

we recorded the facial temperature and eye gaze coordinates of the participant. The study was recorded using

an RGB video camera (further described in the next section). Wemaintained the room temperature at 23
◦
C, and

participants were compensated with 10 EUR upon completion.

4
http://www.optris.com/thermal-imager-pi450

5
https://www.optris.com/
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4 METHOD
In this section, we describe our step-by-step process in which we use to evaluate the combination of thermal

imaging and eye-tracking for attention classification. First, we statistically analyzed the results to evaluate objective

and subjective measures. Second, we extracted the features required for classification. Third, we built and tested

different classifiers based on these features. We then measured the best performing classification model on our

different classifiers before diving down into the performance of the combination.

4.1 Statistical Analysis
To validate our attention elicitation, we analyzed the effect of the attention types on both the subjective cognitive

load from the NASA-TLX reported by the participants and the cognitive load inferred from the recorded facial

temperature. We used three metrics as our dependent variables: the NASA-TLX score, forehead-nasal temperature,

and cheeks temperature (detailed in Section 5.1). We statistically analyzed the data using a repeated measures

ANOVA (with Greenhouse-Geisser correction if sphericity was violated). This was followed by post-hoc pairwise

comparisons using Bonferroni-corrected t-tests.

4.2 Feature Extraction
To train our classifiers, we derived a feature set (14 features) that best describe the various attention types from

both the gaze and thermal data (see Table 2 below). Below, we explain our reasoning behind our choices of features.

The details of howwe trained our classifier can be found in Section 4.3.

Table 2. Selected feature set used for classification.

Type Subcategory Feature

Gaze Stimulus-

dependent

Number of gaze transitions between pairs of AOI. We had up to 3 AOI so

total features of 6 (2*3).

AOIwheremaximumfixation lies in awindowof 45 sec. Our task is designed

for 180s so total features of 4 (45 * 4=180s).

Gaze Stimulus-

independent

Number of fixations.

Mean fixation duration.

Thermal Both Mean forehead and nose temperature difference from the baseline.

Mean temperature change in the cheeks from the baseline.

4.2.1 Gaze Features. Stimulus-dependent features are those that involve the knowledge of the AOI of the interface,

whereas stimulus-independent features are statistical measures computed from eye movements. We pre-processed

the gaze data by removing outliers and by clustering gaze points into fixations. We identified fixations using the

Dispersion-Threshold Identification algorithm [55], as it produces accurate results in real-time using only two

parameters, dispersion, and duration threshold (set to 20 and 100, respectively). From this data, we computed

low-level statistical features, such as the number of fixations and mean fixation duration, as shown in Table 2.

As a representative example, Figure 6 shows the gaze plots for all combinations of task and attention type for

one participant. For our purposes, the meaning of the area under the gaze point in regards to the task at hand is

an important factor in determining the attention state. For example, consider a system that monitors a student

while they watch a video lecture. Two similar fixation patterns will be indicative of attentive or inattentive states

depending on whether it falls inside or outside the video player. Therefore, as suggested by Toker et al. [66], in
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Fig. 3. Area of Interest (AOI). For the visual and audio-visual task and two AOI for the Stroop task. For audio-only stimuli, we
only have one AOI as there is no visual stimuli.

addition to the stimulus-independent features, it is important also to compute stimulus-dependent features that

encode the meaning behind different AOI. Hence, we divided the task interface into different numbers of AOI

depending on the stimuli (see Figure 3). The stimuli-dependent features extracted were the number of fixations in

an AOI for every 45 seconds and the number of gaze transitions between pairs of AOI. To compute the gaze pattern,

we used the number of fixations in each AOI to identify the area with the highest number of fixations fixation every

45 seconds. Though in our experimental setup, we manually created the AOI, in a real system implementation,

they could be set by the UI implementation framework used for its development.

4.2.2 Thermal Features. Previousworks on thermal imaging for users’mental state detection [2, 27, 65], build upon

the fact that changes in the internal states influence thebloodflow[58].Becauseourbloodcarriesheat, changes in the

blood flow influence our skin temperature [27, 28, 57, 58]. Therefore, monitoring changes in facial temperature can

give us an insight into the changes in mental states. Researchers explored multiple regions of interest in the human

body e.g., mouth, nose, and hand [28]. In particular, the face showed potential in detecting changes in states, as it is

exposed and easy to capture by thermal cameras. Furthermore, it has a thin tissue layer,making temperature changes

more observable. Therefore, in this work we explore how facial temperature fluctuations can give us an insight into

changes in cognitive load caused by the experienced different attention types. We computed the temperature differ-

ence of the cheeks, forehead, and nose from their mean baseline temperature, similar to previous works [2, 27, 65].

4.3 Classification Approach
Thegoal of our classifier is tomapa feature vector computed fromawindowof data to oneof four classes correspond-

ing to the type of attention the user was engaged as per the Clinical Model of Attention. To do this, we first built a

user-dependent, condition- independent classifier, whichwas trained on the data from the same participant but differ-

ent condition onwhich itwas evaluated. Thiswas followed by a user-independent classifierwhichwas trained on the
data fromdifferent participants onwhich itwas evaluated.We then further evaluated the user-independent classifier

in twoways—condition-dependent and condition-independent. To put simply,we trained the condition dependent vari-
ant on the data from other participants in the same condition (leave-one-out-cross-validation on participant), while

the condition-independent classifier is trained on a different set of conditions and users to the dataset onwhich it was
evaluated, e.g., trained on the Stroop, Audio and Visual datasets and evaluated on the Audio-Visual (leave-one-out-

cross validation on participant and task). We provide more details on the three distinct classifiers in the remainder

of this section. As different classification models will generate different levels of performance, we compared three

different classifiers for all three classifiers: Support VectorMachines (SVM), K-Nearest Neighbor (KNN) and Logistic

Regression (LR). For the SVM classification model, we used the two hyper-parameters C=5 and gamma=0.01 with
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RBF kernel, while the KNNmodel was trained with k=5 neighbors. We used the scikit-learn package
6
for machine

learning in Python for feature extraction and classification and PyCharm
7
as a development environment.

4.3.1 User-Dependent Classifier. We built a user-dependent, condition-independent classifier by training the data

on the same participant but different condition for the four tasks. This allows us to evaluate the performance of

our approach of a system that is trained on its own user (e.g. by having a calibration phase). To do this, we trained

and evaluated the classifier 22 times, using all 14 features, each time for a specific participant for the remaining

conditions. For example, we trained the classifier on the data of a participant of Stroop, Visual and Audio task and

evaluated the classifier on the data of the same participant but the Audio-Visual task).

4.3.2 User-Independent Classifiers. As the results of a user-dependent classifier can potentially be optimistic (as

the training and testing data are different, but not entirely independent), we next built a user-independent classifier.

Being independent of the user, we can obtain a more robust and generalized classifier. To further avoid overfitting

the user-independent classifier to the particular tasks we have chosen for our experiment, we further split the user

independent classifier in condition-dependent and condition-independent variants.

Condition-Dependent. We evaluated the classification performance of the condition-dependent classifier on the

data from the same condition on which it was trained, but from a different participant. We conducted separate

evaluations for each task (Stroop, Audio, Audio-Visual, Visual), building and evaluating the classifiers using

leave-one-participant-out cross-validation. We trained the classifier 22 times, each time training on the data of

21 participants and evaluating it on the remaining one participant.

Condition-Independent. We evaluated the condition independent classifier by training it 22 times using leave-one-

participant-out cross-validation four times, one for each condition. Each time, we trained it on the data of the 21

participants for three conditions and evaluated it on the data of the fourth condition from the last participant. The

reported results, in the next sections, are averaged by participant but split by the task on which it was evaluated.

5 RESULTS

5.1 Statistical Analysis
Below we present the effect of the attention types of the different conditions on the facial temperature as opposed

to the baseline.

5.1.1 Cognitive Load: NASA-TLX. To confirm that each attention type requires different cognitive resources [41],

we first analyzed the effect of the different attention types on the reported cognitive load via the NASA-TLX.We

tested the effect of the different attention types from different conditions on the overall cognitive load.

Condition-Independent NASA-TLX:. We first analyzed the mean NASA-TLX Score from all conditions (Stroop,

Audio, Visual, and Audio-visual) for the four Attention Types. As depicted in Figure 4, the sustained attention had

the lowest load with an average score of 23.50 (SD = 12.22), followed by the alternating attention with an average

of 27.81 (SD = 14.59), selective attention with an average of 39.17 (SD = 15.88) and the highest was divided attention

with an average score of 52.72 (SD = 18.49). We tested the effect of the Attention Type (4 types) on the overall

NASA-TLX Score with a one-way ANOVA. Mauchly’s test showed a violation of sphericity against difficulty

(0.29,p < .05), so we report Greenhouse-Geisser-corrected (GGe = 0.65) values. We found a significant large effect

of Attention Type on the NASA-TLX score (F2.09,41.72 = 72.29,p < .001,дes = 0.38). Bonferroni-corrected
post-hoc tests found a statistically significant difference between all attention types (p < .05).

6
https://scikit-learn.org/stable/

7
https://www.jetbrains.com/pycharm/
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Fig. 4. The average cognitive load perceived by the participants when experiencing different attention types from different
tasks. Error bars depict the standard error.

Stroop NASA-TLX: . We further analyzed the NASA-TLX score from the Stroop condition. The sustained attention

had the lowest loadwith an average score of 24.32 (SD= 18.23), followed by the alternating attentionwith an average

of 27.84 (SD = 22.51), selective attention with an average of 56.70 (SD = 24.03) and the highest was divided attention

with an average score of 57.01 (SD = 22.16). We tested the effect of the attention Type (4 types) on the NASA-TLX

Score with a one-way ANOVA. Mauchly’s test showed a violation of sphericity against difficulty (0.45,p < .05),
so we report Greenhouse-Geisser-corrected (GGe = 0.73) values. We found a significant large effect of attention

type on the NASA-TLX score (F2.30,46.02 = 30.16,p < .001,дes = 0.34). Bonferroni-corrected post-hoc tests found
a statistically significant difference between all attention types (p < .05), except between the sustained and the
alternating, and between the selective and the divided attention.

Audio NASA-TLX: . In the audio condition, the sustained attention had the lowest loadwith an average score of 24.89
(SD = 18.23), followed by the alternating attention with an average of 29.78 (SD = 17.03), selective attention with

an average of 40.45 (SD = 16.63) and the highest was divided attention with an average score of 48.45 (SD = 20.57).

ANOVA revealed a significant effect of attention type on the NASA-TLX score (F3,60 = 13.04,p < .001,дes = .21).
Bonferroni-corrected post-hoc tests found a statistically significant difference between all attention types (p < .05),
except between the sustained and the alternating, and between the selective and the divided attention.

Visual NASA-TLX: . Again, the sustained attention had the lowest load with an average score of 23.77 (SD =

13.24), followed by the alternating attention with an average of 28.48 (SD = 17.56), selective attention with an

average of 28.55 (SD = 15.72) and the highest was divided attention with an average score of 57.34 (SD = 18.18).

Mauchly’s test showed a violation of sphericity against difficulty (0.51,p < .05), so we report Greenhouse-Geisser-
corrected (GGe = 0.75) values. ANOVA revealed a significant effect of attention type on the NASA-TLX score

(F3,60 = 57.96,p < .001,дes = .41). However, Bonferroni-corrected post-hoc tests found a statistically significant
difference between all attention types (p < .05), except between the sustained and the alternating, between the
sustained and the selective, and between the alternating and the selective attention.

Audio Visual NASA-TLX: . Lastly, for the audio-visual condition, the sustained attention had the lowest load with
an average score of 21.02 (SD = 13.29), followed by the alternating attention with an average of 25.15 (SD = 14.78),
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selective attention with an average of 30.98 (SD = 19.88) and the highest was divided attention with an average

score of 48.07 (SD = 19.80). ANOVA revealed a significant effect of Attentio Type on the NASA-TLX score

(F3,60 = 24.88,p < .001,дes = .27). Bonferroni-corrected post-hoc tests found a statistically significant difference
between all attention types (p < .05), except between the sustained and the alternating, and between the alternating
and the selective attention.

In summary, the different attention types exhibited different NASA-TLX, where sustained attention showed

the lowest NASA-TLX score, followed by the alternating, then selective, and the highest score was observed in

the divided attention. Additionally, we found a significant difference in the NASA-TLX score.

5.1.2 Cognitive Load: Facial Temperature. Informed by the literature, cognitive load could be assessed by mon-

itoring the facial temperature [2, 75], namely the difference between forehead and nose temperature (difference

to the baseline). Other work [28], also investigated the temperature of the cheeks. In this work, we analyzed the

effect of the attention type on the Forehead-Nasal temperature and the Cheeks temperatures.

Fig. 5. Mean Temperature change between the baseline and the different attention types.

Effect of Stroop tasks on Facial Temperature.

Forehead-Nose. We tested the effect on the total change in the forehead and nose temperature. Mauchly’s

test showed a violation of sphericity against attention type (0.47,p < .05), so we report Greenhouse-Geisser-

corrected (GGe = 0.55) values. A large significant effect of attention type on the Forehead-Nose difference

(F2.3,46.4 = 39.22,p < .001,дes = 0.63) was found. Bonferroni-corrected post-hoc tests shows significant differ-
ences between all types of attention (p < .05), except between the sustained and the alternating, and between the
selective and divided attention.

Cheeks. For the cheeks temperature, Mauchly’s test showed a violation of sphericity against attention type

(0.10,p < .05), so we report Greenhouse-Geisser-corrected (GGe = 0.54) values. A large significant effect of

attention type on the cheeks temperature increase (F1.6,33.9 = 50.36,p < .001,дes = 0.49) was found. Bonferroni-
corrected post-hoc tests found significant differences between all types of attention, except between the sustained

and alternating attention.
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Effect of Audio task on Facial Temperature.

Forehead-Nose. Mauchly’s test showed a violation of sphericity against attention type (0.24,p < .05), so we
report Greenhouse-Geisser-corrected (GGe = 0.53) values. A large significant effect of attention type on the

Forehead-Nose difference (F1.6,34.7 = 29.08,p < .001,дes = 0.85) was found. Bonferroni-corrected post-hoc tests
found a statistically significant difference between all attention types (p < .05), except between the sustained and
the alternating attention, and between the selective and divided attention.

Cheeks. Mauchly’s test showed a violation of sphericity against attention type (0.31,p < .05), so we report
Greenhouse-Geisser-corrected (GGe = 0.57) values. A large significant effect of attention type on the cheeks

temperature increase (F1.7,36.1 = 25.59,p < .001,дes = 0.64) was found. Bonferroni-corrected post-hoc tests found
a statistically significant difference between all attention types (p < .05), except between the sustained and the
alternating, and between the alternating and the selective attention.

Effect of Visual task on Facial Temperature.

Forehead-Nasal Temperature. we tested the effect of different attention type of visual tasks on the tempera-

ture metrics. Mauchly’s test showed a violation of sphericity against attention type (0.36,p < .05), so we report
Greenhouse-Geisser-corrected (GGe = 0.51) values. A large significant effect of attention type on the Forehead-

Nose difference (F1.9,38.9 = 50.5,p < .001,дes = 0.78) was found. Bonferroni-corrected post-hoc tests found

significant differences between all types of attention.

Cheeks. Mauchly’s test showed a violation of sphericity against attention type (0.30,p < .05), so we report
Greenhouse-Geisser-corrected (GGe = 0.58) values. A large significant effect of attention type on the cheeks

temperature increase (F1.8,36.7 = 30.05,p < .001,дes = 0.67) was found. Bonferroni-corrected post-hoc tests

found significant differences between all types of attention, except between the sustained and the alternating, and

between the alternating and the selective attention.

Effect of Audio-Visual task on Facial Temperature.

Forehead-Nasal Temperature. Lastly, we tested the effect of different attention type of combination of audio-

visual tasks on the temperature metrics. Mauchly’s test showed a violation of sphericity against attention type

(0.39,p < .05), so we report Greenhouse-Geisser-corrected (GGe = 0.39) values. A large significant effect of atten-

tion type on the Forehead-Nose difference (F1.6,33.9 = 56.15,p < .001,дes = 0.88) was found. Bonferroni-corrected
post-hoc tests found significant differences between all types of attention, except between the alternating and the

selective attention.

Cheeks Temperature. We tested the effect on the cheeks temperature with a one-way ANOVA. A large significant

effect of attention type on the cheeks temperature increase (F2.2,46.9 = 20.00,p < .001,дes = 0.59) was found.
Bonferroni-corrected post-hoc tests found significant differences between all types of attention, except between

the sustained and the alternating, and between the alternating and the selective attention.

In summary, our findings from the statistical analysis validate the correlation between attention types and

cognitive load, deduced from the temperature changes in the selected region of interest. However, not all tasks

exhibited significant difference between the alternating and selective attention types. Further, these findings are

also aligned with the results from our subjective measure of perceived workload (NASA-TLX).

5.2 Classification Performance
Tomeasure theperformanceof the classifiers,we computed the accuracy andAreaUnder theCurve (AUC),which ag-

gregates precision and recall into onemetric.We investigated the effect of the features used (gaze-only, thermal-only
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and gaze+thermal) as well as the usage of user-dependent and user-independent classifiers (condition-dependent

and condition-independent) on the classification of attention types.

5.2.1 Comparison of Different Classification Models. We first compared the performance of the classifiers for the

attention types on the three different models: SVM, KNN and Logistic Regression. Table 3 shows the performance

of the user-dependent and user-independent classifiers using the AUC score for the three classificationmodels. The

AUC score reported in the table is the average AUC for all the four task. As shown, overall the Logistic Regression

model outperforms both SVM and KNN for all three feature sets (gaze-only, thermal-only and gaze+thermal). The

reason being that KNN is an example of a lazy learner [3] classifier which memorizes the training data rather than

learning discriminative function and its performance is highly dependent on the selection of k values passed as an

input parameter [23]. Similarly, SVMclassification results highly dependon the kernel andhyper parameters chosen.

As for the Logistic Regressionmodel, it has less generalization error than KNN and is easier to build compared to an

SVMmodel [13], and for our purpose, it gives the best classification performance overall. Due to this reason, for the

remainder of our analysis we have chosen to explore our results using the Logistic Regression Classification model.

Table 3. Classification Results. Average AUC for all four task of the three classification models (SVM, KNN and Logistic
Regression) for all classifiers.

Classifier Classification Model Gaze Features Thermal Features Gaze+Thermal Features

User Dependent SVM 57.2 ± 3.1% 68.8 ± 3.8% 52.4 ± 2.5%

(Condition Independent) KNN 58.4 ± 1.7% 66.6 ± 3.4% 52.2 ± 1.3%

Logistic Regression 58.9 ± 2.0% 70.7 ± 2.3% 77.4 ± 2.6%

User Independent SVM 59.6 ± 2.2% 70.6 ± 2.7% 61.1 ± 1.8%

(Condition Dependent) KNN 61.3 ± 2.4% 71.0 ± 3.7% 61.3 ± 2.4%

Logistic Regression 76.5 ± 2.2% 69.7 ± 3.1% 86.9 ± 1.8%

User Independent SVM 53.1 ± 1.9% 72.3 ± 4.1% 54.5 ± 2.5%

(Condition Independent) KNN 54.1 ± 2.1% 72.5 ± 3.4% 59.9 ± 2.2%

Logistic Regression 56.9 ± 0.9% 72.7 ± 2.6% 75.7 ± 1.8%

5.2.2 Comparison of Different Classifiers (using Logistic Regression). Table 4 shows the overall performance for

classification according to tasks for all classifiers. Overall, the user-independent, condition-dependent classifier

performs the best compared to the other two classifiers with an average AUC score of 86.9%. In practice, this

would be a classifier that is built-into the application, working for only for that application, but for any user. The

high performance in this condition is expected due to the fact that this classifier is trained and evaluated on the

same condition hence giving a higher performance for the same condition but not necessarily generalizing to

other conditions. To build a more generalized classifier we built two other classifiers which are independent of the

condition — user-dependent (condition independent) and user-independent (condition independent). We found the

performance results to be comparable, obtained an average AUC score of 77.4% and 75.7% respectively.We note that

these scores only decreased slightlywhen compared to the condition-dependent classifier, suggesting the validity of

the general approach of using gaze and thermal imaging for attention classification. The user-dependent (condition-

dependent) classifier is expected to perform slightly better as it will be trained and evaluated on the same user

in the same condition. However, in the context of this work, we did not have enough data to train such a classifier.

Further, the results show that the accuracy of thermal-based classifier remained almost the same across all

tasks. This means that the performance of the thermal-based classifier is largely independent of the task being

performed by the user. Moreover, our findings showed that sustained attention required the least cognitive load
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Table 4. Logistic Regression Classification Performance for All Classifiers (All Stimuli)

Gaze Features Thermal Features Gaze+Thermal Features

Classifier Task Accuracy AUC Accuracy AUC Accuracy AUC

User Stroop 44.3 ± 2.8% 62.8 ± 1.5% 57.9 ± 3.5% 71.9 ± 3.1% 68.3 ± 3.1% 78.8 ± 3.3%

Dependent Audio 25.2 ± 1.8% 51.1 ± 1.0% 57.3 ± 3.1% 71.4 ± 3.3% 58.2 ± 1.2% 71.8 ± 1.2%

(Condition Visual 46.2 ± 2.9% 52.1 ± 2.8% 54.8 ± 2.5% 68.1 ± 1.3% 70.4 ± 3.5% 80.3 ± 2.3%

Independent) Audio Visual 54.4 ± 4.2% 69.7 ± 2.8% 57.9 ± 1.2% 71.4 ± 1.3% 68.8 ± 2.7% 78.8 ± 3.8%

User Stroop 63.6 ± 4.6% 75.8 ± 3.0% 54.5 ± 4.5% 69.7 ± 3.0% 81.8 ± 3.5% 87.9 ± 2.2%

Independent Audio 26.1 ± 1.1% 50.8 ± 0.8% 53.4 ± 4.7% 69.7 ± 3.0% 48.9 ± 3.0% 65.9 ± 2.0%

(Condition Visual 78.4 ± 4.1% 85.6 ± 2.8% 54.4 ± 2.4% 69.7 ± 3.8% 95.5 ± 2.7% 97.0 ± 1.8%

Dependent) Audio Visual 90.9 ± 3.1% 93.9 ± 2.1% 54.5 ± 4.2% 69.7 ± 2.8% 95.5 ± 2.1% 97.0 ± 1.4%

User Stroop 45.5 ± 4.1% 63.6 ± 1.0% 59.1 ± 3.2% 72.7 ±2.1% 67.8 ± 1.6% 78.8 ± 1.1%

Independent Audio 25.0 ± 0.0% 50.0 ± 0.0% 59.1 ± 5.5% 72.7 ± 3.7% 54.1 ± 2.7% 69.4 ± 1.8%

(Condition Visual 40.1 ± 1.7% 58.7 ± 1.1% 59.1 ± 4.2% 72.7 ± 3.3% 70.1 ± 2.8% 80.4 ± 1.0%

Independent) Audio Visual 36.0 ± 1.7% 55.3 ± 1.4% 58.2 ± 5.0% 72.7 ± 1.3% 61.8 ± 2.8% 74.0 ± 3.1%

followed by alternating, selective and divided attention, as reflected in the thermal features, and as suggested by

our subjective measures. One important finding we observed was that the attention types are most accurately

classified with an accuracy of (95.45%) when the participant is performing the visual and least accurately classified

when the task being performed is audio. We also observed the same trend when comparing the performance of the

user-independent (condition-dependent) classifier trained on just the gaze features. From our results, we observe

that when classifying audio-only tasks, the thermal features alone worked as a better predictor than the classifiers

that both gaze and thermal features. The reason being that the audio-only tasks lacks any visual stimuli, hence,

the gaze features does not hold any significance for classifying attention in audio-only task—effectively working as

noise.With reference to Figure 6, we can see that all tasks in each attention type have a distinct pattern, for example,

in the alternating attention tasks, we can see a clear pattern the left and right AOIs. As for the audio-only tasks, the

gaze patterns appear to be randomwith the participant, either focusing randomly around the screen or at a focused

point with random saccades around the screen. Due to this reason, the average for the condition-independent

classifiers for all tasks does not perform as well compared to the condition-dependent classifier as their training

set includes the insignificant gaze features of the audio-only task, which decrease the classification accuracy for

the gaze-only and gaze+thermal feature sets.

To measure the effect of removing the task which lacks visual stimuli (i.e. audio-only tasks) on the condition-

independent and user-dependent classifier, we retrained our classifiers by only considering the task with visual

stimuli (Audio Visual, Visual and Stroop). This is so the gaze features in the training data set would remain

meaningful in the classification process.

We evaluated the user-independent, condition-independent classifier by training it 22 times using leave-one-

out-cross-validation (LOOCV) three times, one for each condition. Each time, we trained it on the data of the 21

participants for two conditions and evaluated it on the data of the third condition from the last participant. As for

the user-dependent, condition-independent, classification, we trained the classifier 22 times using cross-validation

three times, one for each condition. Each time, we trained it on the data of the single participant for two conditions

and evaluated it on the data of the third condition from the same participant. The results of the user-independent,

condition-independent and the user-dependent, condition-independent classification that only considers tasks
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Fig. 6. Gaze Plots, highlighting the patterns in each task and how the audio task has no observed unique patterns.

Table 5. Logistic Regression Classifier Performance without audio-only tasks

Gaze Features Thermal Features Gaze+Thermal Features

Classifier Task Accuracy AUC Accuracy AUC Accuracy AUC

User Stroop 46.5 ± 3.1% 65.2 ± 2.7% 48.9 ± 3.0% 68.2 ±3.5% 77.3 ± 4.0% 84.8 ± 2.7%

Independent Visual 44.1 ± 3.6% 62.9 ± 2.4% 59.1 ± 4.2% 72.7 ± 3.3% 79.5 ± 3.5% 86.4 ± 2.0%

(Condition Audio Visual 37.5 ± 2.7% 58.3 ± 1.8% 57.9 ± 5.0% 71.9 ± 3.3% 62.5 ± 3.10% 75.0 ± 2.3%

Independent)

User Stroop 48.0 ± 2.5% 68.3 ± 1.6% 62.5 ± 3.2% 75.0 ± 3.8% 77.8 ± 3.6% 85.1 ± 2.4%

Dependent Visual 48.9 ± 1.9% 65.9 ± 1.3% 60.3 ± 4.2% 73.5 ± 3.5% 80.7 ± 3.2% 87.1 ± 2.1%

(Condition Audio Visual 57.9 ± 3.8% 71.9 ± 2.5% 68.1 ± 4.9% 78.8 ± 3.3% 76.1 ± 4.1% 84.1 ± 1.7%

Independent)

with visual stimuli shows an increased classification accuracy (see Table 5). Hence, observing a better classification

accuracy for each task for both type of classifier has increased as now the gaze feature plays a significant role in

attention classification. In practice, this means that eye-tracking only helps the classifier when the task involves

a visual stimulus. Otherwise (i.e. as in audio-only tasks), it tends to harm the classification results.
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6 DISCUSSION
The results of our study and a review of prior work revealed that different attentive states could be distinguished

by the locus of visual attention and estimated cognitive load. On this basis, in the previous sections, we presented

the results from collecting, analyzing and classifying gaze and thermal data of different attention types, which

we summarize and discuss grouped by the most important observations in the following.

6.1 On Performance
In this work, we discuss a first attempt of combining thermal imaging and eye tracking to discriminate between

four types of user attention. Our results show that attention classification is feasible, achieving an accuracy of up

to 95.45% when using a condition-dependent prediction (see Table 4). This result is promising as it paves the way

for new applications in which classification can be tailored to a particular known condition or task. For example,

this could be embedded into an e-learning system to measure student attention during a lecture.

In contrast, the condition-independent classification ismore challenging.When comparing the performancewith

the condition-dependent classifier,we observed a decrease in the accuracy between 62.5% and 79.50%while consider-

ingonly the taskswith visuals stimuli. Though this performancemight be sufficient for someapplications and iswell-

above the 25% baseline, furtherwork is needed to bring performance up to the same level as for condition-dependent

prediction.Thismeans that this approach isnotyetquite feasible fordistinguishingattention types inunknowntasks.

However, in all of our experiments, our user-independent results were strong, suggesting that by training the

classifier on one specific task, the classification generalizes well to unseen users.

6.2 On Discriminating Different Attention Types
Based on our review of the literature, we hypothesized that different attention types require different cognitive load

levels, which would lead to a change in the participants’ facial temperature patterns. From previous work, we know

that regions on the face such as forehead, nose, and cheeks are often visible points and are feasible for temperature

measurement [2, 28]We tested the effects of different tasks and their attention types on temperature changes in

these points. We elicited different attention types through set of tasks with different stimuli and found a significant

difference in the metrics used across the different attention types. We confirmed the validity of our findings, where

the same pattern of facial temperature changes was observed across the different conditions (Stroop, Audio, Visual,

and Audio-Visual). Our findings from the statistical analysis validate the correlation of cognitive load, deduced

from the selected region of interest, and the different attention types. Although it was not significant across all

attention types (e.g. sustained and alternating attention), it could give a hint about the experienced attention type.

Furthermore, this highlights the role of gaze data to complement thermal data.

For discriminating attention types using a classifier,we investigated the performancewhen classifying each atten-

tion type separately. Our results show that alternating attention achieved the highest accuracy for the thermal and

the eye feature set because the alternating gaze pattern of participants from one AOI to another is a strong indicator

of alternating attentional state. For this task, the thermal features do not capture much information of participant

attention state as indicated by low performance of the classifier trained on just the thermal features set (see Table 6).

For sustained and divided attention, gaze features did not work as well but we found that thermal features

performed well. Temperature variation was considerably different compared to other attentional states as shown

in Figure 5. For selective attention, the performance of the classifier was the lowest. This attention type was mostly

confused with divided attention, as can be seen from the confusion matrix (see Figure 7). One likely reason is that

the thermal features (forehead-nasal and cheeks) change across all attention types. For instance, the change in

facial temperature for selective attention overlaps the most with the divided attention (Figure 5).
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Table 6. Recognition accuracy of each attention type with the condition-independent classifier based on gaze only, thermal
only and gaze and thermal features.

Attention Types Gaze Thermal Gaze & Thermal

Alternating 100% 27.27% 100%

Sustained 13.0% 86.36% 90.9%

Selective 27.0% 36.36% 18.18%

Divided 50.0% 69.7% 81.81%

6.3 On Combining Thermal Imaging and Eye Tracking
Additionally, we found that combining both gaze and thermal features boosted the performance of the classifier as

compared to using gaze or thermal only (Figure 7 andTable 5) for the visual tasks. This is because eachmodality com-

plements the other for the classification of attentional types. For instance, Figure 6 shows that divided and sustained

attention present very similar gaze patterns but elicit very different levels of cognitive load, which is reflected in the

thermal features (Figure 5). In contrast, alternating attention presents itself somewhere in between sustained and

selective attention in terms of facial temperature but exhibits very distinct eyemovement patterns as reflected in the

figure. This highlights the importance and potential of using thermal imaging and eye tracking in combination to

classify attention types. Interestingly, we observed that thermal features exhibit the same performance for different

conditions. This validates that different attention types allocate different cognitive load, regardless of the stimuli (see

Table4). Incontrast to thegaze features,becausewerelyontheAOI, the featuresare influencedbythe taskandstimuli.

This is reflected in classification accuracy using only the gaze features. For instance, as shown inTable 4 the fixations

obtained in the audio task for various attention typeswere arbitrary (see Figure 6), andwedidnot observe anyunique

patterns of gaze transition for different attention type as the participantwas asked to just attend to the playing audio.

6.4 On Different Conditions
We observed a decrease in classification accuracy for the audio condition when using gaze and thermal as opposed

to using thermal features only. This is because in the audio condition, participants’ eye movements were arbitrary,

due to the lack of visual stimuli. Hence, training the classifier with the audio task gaze data, would mean training

the classifier with confusing data. In other words, including gaze data of the audio only condition, would then

yield to reduced performance. Further exploring the confusion matrix (see Figure 9) of the classifiers trained on the

thermal feature only, we can conclude that for an audio-only task attention could be classified into sustained and

divided attention more accurately then the selective and alternating type. Based on this observation, we suggest

using only thermal features to classify attention types for audio-only tasks.

6.5 On Attention Type-Aware System Development Approaches
We observed that the average classification accuracy for the user-dependent, condition independent classifier in

all four tasks and three feature sets is higher than the user-independent classifiers (see Table 4 and Table 5). This

means that the user-dependent classifier was able to predict the attention type of a specific user more accurately

when trained on the data of the same user (user-dependent) rather than training it on features of all users (user-

independent). Similar results on discriminating attention types were achieved for a user-dependent classifier (see

Figure 8) with alternating attention achieving the highest accuracy, and selective attention achieving the lowest

accuracy for thermal and gaze feature set. We found that similar to the results obtained for user-independent

classifier, the performance of user-dependent classifier is also boosted by combining both gaze and thermal feature

set for the Stroop, Visual and Audio-Visual task. One obvious limitation of user-dependent classifier would be
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Fig. 7. User Independent Average ConfusionMatrices. The results show the classification for all tasks expect Audio-only tasks.

Fig. 8. User Dependent Average ConfusionMatrices. The results show the classification for all tasks expect Audio-only tasks.

that it would not be generalized for different users. In practical terms, this means that if the system requires user

calibration prior to use. However, if a real-time attention classification system is required, which could classify

attention of any user without being trained every time for a new user, then a user-independent classification

approach would be more suited. Therefore, the types of classification approach taken would highly dependent

on the type of application the system is used in.
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Fig. 9. Average confusion matrices for all classifiers for audio only task on thermal feature set.

7 EXAMPLE USE CASES
Our findings show that the proposed classifier was able to classify attention types unobtrusively. Applications that

take into account the attention type can be applied to a broad range of applications ranging from education [25, 54],

performancemanagement in theworkplace,distractionmanagement [7, 31], toquantified-self applications [12].Edu-

cational applications couldmonitor students’ attention type andadapt accordingly, e.g. assessing if thepresentedma-

terial is “attention-grabbing" so that the students would show sustained attention rather than divided or alternating

attention, aiming to better design learning systems [25]. Furthermore, workplaces could benefit from our approach

by helping workers manage their attention if he/she are experiencing divided attention during safety-critical task,

and to avoid divided attention in dangerous situations (e.g. operating trains) [38, 71]. Additionally, if a user should

focus to finish a task, an attentive user interface could help the user to keep their attention sustained on the task [61].

Online distractions are a controversial aspect of our current technology-mediated workplaces. Our approach

could be used to manage distractions, especially with users that are more susceptible to social distraction [42]. An

interface could block the distraction source (e.g. social media, smartphone) when alternating or divided attention

between the task in hand and the distraction source is detected [7]. We also can deploy attention-type detection for

quantified-self applications as proposed by Dingler et al. [12]. The system couldmonitor the attention type patterns

throughout the day, aiming to assist users with tracking and managing their attention distribution to enhance

their well-being. For instance, stress and frustration occur when there is a mismatch between the accomplished

tasks and the planned ones [67] due to the lack of sustained attention on the planned tasks. Furthermore, the high

frequency of divided attention may lead to burnout and memory distortion [46].

8 LIMITATIONS AND FUTUREWORK
This work proposes the first steps towards classifying attention using unobtrusive sensors. As such, we required

a dataset with clearly labeled attention types for training our classifier.

Despite these promising results, our work has several limitations that we plan to address in futurework. First, the

controlled task is likely to lead to behavior changes. Similar to studies in Affective Computing, there is a trade-off

between the quality of the labels and the naturalness of user behavior. We opted for a controlled setup to increase

the quality of the labels at the expense of natural behavior. By demonstrating the feasibility of the approach, our

next steps will involve collecting a more naturalistic in-the-wild dataset. Second, we labeled the data according
to the elicited attentional state. While these tasks were informed by previous work in psychology, it is difficult to

guarantee that users were in those states at all times during the tasks. For example, during sustained attention, we
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cannot guarantee that participants did not momentarily “mind-wandered”. We tried to minimize these effects by

keeping our tasks time reasonably short. Third, users’ eyemovements are highly dependent on the stimuli used.We

attempted to minimize the effects of the particular stimulus by abstracting from the visual layout of the interface

, instead, computing features based on Areas of Interest (AOI). This tends to minimize the overfitting due to the

visual design of the interface as compared to low-level features only. For example, in our design, the two pieces of

text in the alternating attention conditionwere side-by-side. If we had trained a classifier using saccade directions, a

high proportion of large sideways saccades would likely be indicative of alternating attention. However, if the same

classifier were applied in an interface where the two texts were displayed one on top of each other, the approach

would no longer work. Using AOIs allows us to abstract from the specifics of the interface, but also introduces a

new challenge—how to determine which areas are of interest. This limitation can be addressed in many ways. For

example, a learning system could specify that the video player is an AOI. A system like RescueTime could classify
the applications that are part of productive (i.e., attentive) use of time and set it as the AOIs.

Fourth, thermal imaging is influenced by external factors, e.g. changes in room temperature, and internal factors,

e.g. changes in affective states. These can be confounds that might affect the performance of the system in the

wild. A more naturalistic dataset is required to explore these questions. Additionally, we envision that running an

evaluation on participants with more experience in executing focused tasks such as seasoned workers would yield

interesting insights, as well as running this over a longer period of time. We also plan to explore the performance

of the gaze and thermal classifier by extracting more stimulus-dependent gaze features such as saccade velocity

and length from one AOI to another and stimuli dependent feature such as the total fixation rate and mean saccade

rate and angle for the individual task. Lastly, our findings open up further research question—how to distinguish

between selective and divided attention. This can be explored by augmenting another bio-data e.g., GSR, heart

rate, aiming to investigate if they differ in terms of other physiological responses.

9 CONCLUSION
Throughour reviewof relatedwork,we concluded that no priorwork explored the use of thermal imaging combined

with eye tracking to classify attention types. Consequently, in this work, we began our exploration by identifying

gaze and features that could potentially reveal the four attention types—sustained, selective, alternating and divided
attention. We investigated the effects of using different feature sets (gaze, thermal and the combination of thermal

and gaze features) in classifying the four attention types. We used the extracted features to train two categories

of classifiers: (1) condition-dependent and (2) condition-independent classifiers. Our classifiers achieved AUC up to

95.45% and 79.5% respectively. Furthermore, we investigated the performance of user dependent and independent

classifiers, we had AUC up to 75.7% for the user independent-condition independent, 87% user-independent-

condition dependent, and 77.4% for the user-dependent classifier). We additionally found that there is an increase

in the classification accuracy when using the combination of gaze and thermal features as opposed to using gaze or

thermal features alone. In this work, we were able to classify attention types unobtrusively, using a thermal camera

and a remote eye tracker. This enables novel opportunities in the field of attention-aware computing: our approach,

for example, can be applied in different research areas, e.g., education, adaptive and assistive systems. It could also

be used to track and give feedback to the user, to increase the user’s awareness of their attention patterns.

In summary, our results reveal the feasibility of building an attention classifier basedon facial temperature and eye

movements.Hence,weenvision thatourworkcanserveasan initialbuildingblock tounderstanding thehumanmind

and the influence of different attention types.We hope that developers of attention-aware and adaptive systems can

useour results to build enhanced adaptive systemswith adiverse set of application to benefit users in everydayusage.
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