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Abstract

We present V2Dial – a novel expert-based model specif-
ically geared towards simultaneously handling image and
video input data for multimodal conversational tasks. Cur-
rent multimodal models primarily focus on simpler tasks
(e.g., VQA, VideoQA, video-text retrieval) and often neglect
the more challenging conversational counterparts, such as
video and visual/image dialog. Moreover, works on both
conversational tasks evolved separately from each other de-
spite their apparent similarities, limiting their applicability
potential. To this end, we propose to unify both tasks using a
single model that for the first time jointly learns the spatial
and temporal features of images and videos by routing them
through dedicated experts and aligns them using matching
and contrastive learning techniques. Furthermore, we sys-
temically study the domain shift between the two tasks by
investigating whether and to what extent these seemingly re-
lated tasks can mutually benefit from their respective train-
ing data. Extensive evaluations on the widely used video
and visual dialog datasets of AVSD and VisDial show that
our model achieves new state-of-the-art results across four
benchmarks both in zero-shot and fine-tuning settings.

1. Introduction
Enabled by the availability of large-scale training data
[10, 14, 46] and advances in model design [12, 25, 42, 54,
58], the field of vision-and-language learning saw unprece-
dented success in recent years. However, current multi-
modal foundational models [7, 37, 42, 56, 60] still mainly
focus on single-round tasks (e.g., VQA [8], VideoQA [64],
video-text and text-video retrieval [65]). In contrast, the sig-
nificantly more challenging conversational tasks, such as vi-
sual [1, 23] and video dialog [5], received considerably less
attention. Furthermore, methods for these different tasks
have advanced independently of each other despite the ap-
parent structural similarities between them. They both op-
erate on a visual input (i.e. an image or video), a short vi-
sual description (caption), and a dialog history composed of

Figure 1. V2Dial uses multimodal experts and outperforms
state-of-the-art methods on both video and visual dialog in zero-
shot and fine-tuning evaluation settings.

previous question-answer pairs. On the one hand, visual di-
alog models [4, 15, 16, 49, 62] have been primarily trained
to rank a list of candidate answers using a Next Sentence
Prediction (NSP) head similar to BERT [24] and negative
sampling. Thus, they are benchmarked using retrieval met-
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rics such as recall (R@k) and normalized discounted cu-
mulative gain (NDCG). In contrast, video dialog models
[2, 3, 6, 18, 20, 33, 51, 66] are trained to auto-regressively
predict the next answer token using teacher forcing [63] and
are evaluated using language generation metrics.

In this work, we mitigate the shortcomings of current
dialog systems by proposing V2Dial – a novel multimodal
expert-based model capable of unifying video and visual di-
alog tasks without any architectural changes. Specifically,
we train dedicated multimodal expert layers that separately
process the features of each input modality and learn how
to align them using matching and contrastive learning tech-
niques. A key novelty of our approach is that we use ded-
icated experts to jointly learn the spatial and temporal fea-
tures of images and videos by routing them through the ap-
propriate experts. Then, we couple these layers with a pre-
trained LLM to align their hidden states. Thanks to its mod-
ularity, our model can efficiently tackle image and video in-
put data simultaneously and seamlessly train on both data
types. In summary, our contributions are three-fold:
• We propose V2Dial – a multimodal expert-based model

that unifies visual and video dialog by simultaneously
learning from image and video data. As a core nov-
elty, it employs two experts to separately learn the
spatial and temporal features of images and videos.
V2Dial outperforms state-of-the-art models in both zero-
shot and fine-tuning settings (see Figure 1).

• We are the first to systematically quantify the effect of
domain shift between video and visual dialog tasks based
on evaluations on the two widely used datasets of AVSD
[5] and VisDial [23]. To this end, we propose an alter-
native ranking scheme that allows computing the VisDial
retrieval metric for fully generative models and enables a
fair comparison with previous works.

• We are the first to evaluate AVSD in a zero-shot setting,
which provides a more solid generalization evaluation of
video dialog models compared to the fine-tuned setting.
For this, we establish the first benchmark comparison of
recent state-of-the-art multimodal models.

2. Related Work
Visual & Video Dialog. Modeled after human-human com-
munication, visual and video dialog involve reasoning about
a visual scene in the form of a video or an image through
multiple question-answering rounds in natural language. In
comparison to their single-round counterparts, VQA [8] and
VideoQA [64], dialog models need to additionally reason
about the previous dialog history together with the visual
grounding and the current question to be able to answer
it efficiently. The best performing visual dialog models
[4, 47, 62, 67] leverage pre-trained VLMs and are trained
using an NSP head, negative sampling, and binary clas-
sification loss. At test time, for each question, the can-

didate answers are ranked based on their respective NSP
scores to compute the retrieval metrics. Although some
work [15, 16, 61] claim to train generative visual dialog
models, they do so by providing a generative mask where
each token can only attend to its left tokens. However, they
are trained using the NSP head like the discriminative mod-
els. However, this training approach is limiting and subop-
timal for a unifying model. Thus, we advocate for a fully
generative training paradigm and adapt the ranking scheme
of VisDial answers to cater to modern generative models.

In contrast, works on video dialog follow a purely-
generative training paradigm and achieved great success
building on top of powerful pre-trained LLMs [35, 52].
For example, [30, 39] fine-tuned a LLM on AVSD and
obtained performance boosts. More recent works [3, 33]
combined LLMs with GNNs and pushed the state-of-
the-art results even further. Others [66] introduced a
regularization loss to mitigate hallucination. Although
video dialog emerged as a natural extension to visual
dialog with apparent data structure similarities, research
on both tasks evolved separately. To this end, we propose
a unifying model that can simultaneously learn both
tasks without any architectural modifications and for the
first time; systemically study the effect of domain shift be-
tween both tasks using the AVSD and VisDial v1.0 datasets.

Multimodal Expert-based Training. Enhancing models
with expert-based training has shown promising potential
in boosting performance while maintaining computational
efficiency [26, 69, 70]. Some works [12, 60] explored using
single modality specific experts within a multimodal trans-
former architecture. Specifically, they used one vision and
one language specific FFN after a shared multi-head self-
attention block. Other works [40, 48] explored using multi-
ple sparse modality-agnostic experts and trained them using
soft-routers. Our work is positioned at the middle ground of
the previously mentioned research directions: We propose
to use multiple hard-routed experts per modality to be able
to capture more fine-grained features compared to a single
expert or multiple modality agnostic experts. Specifically,
to the best of our knowledge, V2Dial is the first model that
learns disentangled spatial and temporal features using two
dedicated experts that jointly learn from image and video
data. In addition, we propose to deploy two separate lan-
guage experts (for caption and context) in order to tackle
the unique challenges of multimodal conversational tasks.

3. V2Dial

3.1. Joint Problem Formulation

We use a fully generative formulation to unify both video
and visual dialog tasks. Specifically, given visual input V
(video/image), a corresponding visual description (caption
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Figure 2. Architectural overview of V2Dial . We adopt a training strategy composed of three stages. First, we only train the multi-
modal expert layers using spatial-temporal and video/image text matching losses (Lstm,Lvtm), spatial-temporal and video/image contrastive
learning losses (Lstc,Lvtc), and masked language modeling loss (Lmlm). Second, we couple the expert layers with a frozen pre-trained LLM
end-to-end, using a generative loss Lgen to align their hidden representations. Finally, we additionally fine-tune the LLM weights on the
downstream benchmarks. Each expert is a feed-forward network (FFN) composed of two fully connected layers.

C), a dialog history Hr = {(Q1, A1), ..., (Qr−1, Ar−1)} com-
prised of the previous question-answer pairs {(Qi,Ai)}

r−1
i=1

and the current question Qr, a model is trained to auto-
regressively predict a free-form answer Ar at round r.
Specifically, each answer token ai

r satisfies

a
i
r = argmax

a∈V
[p (a∣V,C,HrQr,A<i

r )] , (1)

where A<i
r denotes the previously predicted answer tokens

and V the vocabulary. In the rest, we use “context” to refer
to the concatenation of the history Hr and the question Qr.

3.2. Architecture

Overview. As can be seen from Figure 2, our model takes
an image/video V ∈ RF×3×H×W as input, where F is the
number of frames and is set to one for images, and (H,W )
is the re-sized resolution. Then it processes every frame us-
ing a pre-trained EVA-CLIP [57] Image Encoder and con-
catenates every four spatially adjacent visual patches into a
single one. Then, a linear layer maps each visual token into
a lower dimensional vector v of dimension D to obtain

V =
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, (2)

where P =
1
4
H×W
142

and D denote the visual input length
and the joint hidden dimension, respectively. Thereafter, in
stark contrast to previous works [13, 19] that performed spa-
tial and temporal attention in series, our model separately

performs these operations using the masks Mspa and M
tmp

as shown in Figure 2 on the visual features V to obtain

V
spa

= SA(V,M
spa) ∈ R(FP )×D (3)

V
tmp

= SA(V,M
tmp) ∈ R(FP )×D (4)

M
spa
m,n(v

j
i ) = δnj , M

tmp
m,n(v

j
i ) = δmi (5)

where SA and δ denote self-attention and Kronecker delta.
Subsequently, the textual input in the form of a caption

and a context is processed by an embedding layer to obtain
T

cap/ctx
∈ RNcap/ctx×D, where Ncap and Nctx are the respective

lengths of the caption and context. These visual and textual
features form the initial input to the multimodal expert lay-
ers which are pre-trained using a combination of matching,
contrastive learning, and masked language modeling losses.
Finally, they are coupled with a pre-trained LLM and are
fine-tuned end-to-end using a generative loss.

Multimodal Expert Layers. These consist of N layers
of stacked multi-head self-attention with layer normaliza-
tion (SA), and several modality-specific and one modality-
agnostic feed-forward networks that we refer to as experts.
As shown in Figure 2, we propose to use a set of six ex-
perts denoted as {E∗}: three of which are vision-specific
and two are language-specific and are activated in the first
L layers. The remaining expert Efus is the fusion expert and
is only activated in the last (N − L) layers and operates on
the concatenation of all available modalities (Equation 9).
To the best of our knowledge, we propose for the first time
to learn the spatial and temporal features using dedicated
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Figure 3. Overview of the training and evaluation pipeline of V2Dial . We show the different datasets used to train our model at each
stage. Evaluations are conducted on the most popular video and visual dialog datasets of AVSD and VisDial, respectively. ( = video
data, = image data, = closed / visual captioning data, = dialog data).

experts (i.e., the spatial Espa and temporal Etmp experts, re-
spectively) as shown in Equation 11. This allows our model
to unify video and visual dialog by jointly learning from
image and video data. The visual expert Evis operates on
top of the concatenation of Espa and Etmp to learn a joint
spatial-temporal video representation (Equation 10). Simi-
larly, the textual experts Ecap and Ectx operate on the caption
and context embeddings Tcap and T

ctx (Equation 12). As
seen in Table 1, the availability of the multimodal features
depends on the visual input type (i.e., videos vs images) and
the training stage. However, without the loss of generality,
we can formulate the multimodal expert layers as follows:

X0 = [Vspa
,V

tmp
,T

cap
,T

ctx], (6)

X̃l = [Ṽspa
l , Ṽ

tmp
l , T̃

cap
l , T̃

ctx
l ] (7)

= SA(Xl−1) +Xl−1 (8)

Xl = {[V
vis
l ,T

cap
l ,T

ctx
l ] if 1 ≤ l ≤ L

Efus(X̃l) + X̃l if L < l ≤ N
, (9)

V
vis
l = Evis(Ṽvis

l ) + Ṽ
vis
l , Ṽ

vis
l ≔ [Vspa

l ,V
tmp
l ], (10)

V
spa
l = Espa(Ṽspa

l ) + Ṽ
spa
l , V

tmp
l = Etmp(Ṽtmp

l ) + Ṽ
tmp
l , (11)

T
cap
l = Ecap(T̃cap

l ) + T̃
cap
l , T

ctx
l = Ectx(T̃ctx

l ) + T̃
ctx
l . (12)

When dealing with images and non-dialog data, we drop
V

tmp
l and T

cap
l from the previous equations and deactivate

the respective expert.

3.3. Training

3.3.1 Stage 1

In the first stage, we only pre-train the multimodal ex-
pert layers, the vision encoder linear layer, and the spatial-
temporal attention modules. Since we are the first to sug-
gest learning the spatial and temporal features of videos and
images using dedicated experts, we propose to train our
model using spatial-temporal contrastive learning (STC)
and spatial-temporal matching (STM). In addition, we use
the established masked language modeling (MLM), vision-
text1 contrastive learning (VTC), and vision-text matching
(VTM) similar to [19, 36, 37].

1Vision can either be video or image depending on the dataset.

Tr. Stage Tr. Stage Tr. Stage

Videos V
spa
,V

tmp
,T

cap
V

spa
,V

tmp
,T

cap
,T

ctx
V

spa
,V

tmp
,T

cap
,T

ctx

Images V
spa
,T

cap - V
spa
,T

cap
,T

ctx

Table 1. Overview of the available features for each training stage
and visual input type.

Spatial-Temporal Contrastive Learning aims to better
align the spatial and temporal features of video data. To
this end, we use output features of the last multi-modal exert
layer2 and learn a cosine similarity function

s(Vspa
,V

tmp) = Θspa(Vspa)⊤Θtmp(Vtmp), (13)

so that aligned spatial-temporal features result in higher
similarity scores, where Θ∗ are linear layers that map the
features to a normalized lower dimensional vector space.
Then, given spatial and temporal feature pairs, we compute
the softmax normalized spatial-to-temporal and temporal-
to-spatial similarities as

p
s2t
i (Vspa) = exp(s̃(Vspa

,V
tmp
i )/τ)

∑K

k=1 exp(s̃(Vspa,V
tmp
k )/τ)

, (14)

p
t2s
i (Vtmp) = exp(s̃(Vtmp

,V
spa
i )/τ)

∑K

k=1 exp(s̃(Vtmp,V
spa
k )/τ)

, (15)

where τ is learnable temperature parameters, and s̃ is the
maximum value of s as in [37]. Finally, we can compute the
loss as the cross-entropy H between p and y:

Lstc =
1

2
E(Vspa,Vtmp) [H (ys2t

,p
s2t) +H (yt2s

,p
t2s)] , (16)

where y
s2t and y

t2s are the golden one-hot similarities.

Spatial-Temporal Matching complements STC and
teaches the model to distinguish between positive and neg-
ative spatial-temporal feature pairs. Specifically, a matched
feature pair originates from the same video, whereas an un-
matched pair is constructed using negative sampling from a

2Index dropped for clarity.



different video. We use a classification token as a proxy of
the joint spatial-temporal representations to learn a binary
classification problem using the STM loss

Lstm = E(Vspa,Vtmp) [H(ystm
,p

stm)] , (17)

where p
stm and y

stm are the predicted and the ground-truth
two-class probabilities, respectively.

We provide more details about the remaining established
objectives (i.e., MLM, VTC, VTM) in the supplementary.

3.3.2 Stages 2 & 3

In the subsequent stages, we couple the multimodal ex-
pert layers with a pre-trained Flan-T5large [22] via a linear
layer. Specifically, Stage 2 aims to align the hidden states
of the proposed layers with those of the pre-trained LLM.
To this end, we keep the LLM weights frozen and train the
whole architecture end-to-end using the generative loss (i.e.,
next token prediction) on large scale video dialog data3, i.e.,

Lgen = EXgen [H(ygen
→ ,p

gen)] , (18)

X
gen

= Θgen (LLMdec([Xenc
,T

ans])) , (19)

where Xenc, Tans and Θgen are the LLM encoder output, the
answer token embeddings, and a linear layer that maps the
features to the vocabulary space, respectively. ygen

→ and p
gen

denote the right-shifted ground-truth answer tokens and the
predicted text token probabilities. Finally, in Stage 3, we
unfreeze the LLM weights and fine-tune our model end-to-
end on the downstream tasks of video and visual dialog us-
ing the same generative loss.

4. Experiments
4.1. Datasets

As shown in Figure 3, we simultaneously use the video and
image captioning datasets of WebVid-2M [10] and CC-3M
[55] to pre-train the multimodal expert layers in Stage 1.
Then in the second stage, we use 25% of the recent large-
scale video dialog dataset Champagne [27] before perform-
ing zero-shot evaluation on the widely used video and visual
dialog datasets of AVSD [5] and VisDial [23], respectively.
Finally, in the third stage, we perform a domain shift evalu-
ation based on different combinations of AVSD and VisDial
to quantify whether and to what extent these seemingly sim-
ilar benchmarks benefit from each other in both zero-shot
and fine-tuning evaluation settings.

4.2. Evaluation Metrics

We use the established official metrics for each dataset to
fairly benchmark V2Dial with previous works. Specifi-
cally, for all three AVSD datasets, we use BLEU (B-n) [50],

3The weights of Ectx are initialized with those of Ecap from Stage 1.
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Figure 4. Instead of training a dedicated NSP head, we propose
a ranking scheme based on the cosine similarity of the candidate
answers’ embeddings with the respect to those of the generated
ones. We used RoBERTalarge [43] and OpenAI Text Embedding-
3large to generate these embeddings.

ROUGE-L (R) [41], METEOR (M) [11], and CIDEr (C)
[59]. Whereas for VisDial, we use the retrieval metrics of
recall (R@k), mean reciprocal rank (MRR), and normal-
ized discounted cumulative gain (NDCG). However, since
we are jointly tackling both tasks with a fully generative
model, we propose to rank the VisDial candidate answers by
means of cosine similarity with respect to the generated an-
swer using the embdeddings of a pre-trained sentence trans-
former (i.e. RoBERTa [43] and OpenAI Text Embedding-
3). We posit that this approach is more natural, caters to
the current advances in generative models, and appropri-
ately captures the semantic similarities between the gener-
ated and the candidate answers. In addition, it allows for
a seamless unification of AVSD and VisDial without any
training or architectural modifications. As shown in Fig-
ure 4, our proposed adaptation does not alter the computa-
tion of the sparse metrics itself and only rethinks the rank-
ing of the candidate answers allowing for a fair comparison
with previous works.

4.3. Experimental Setup

In the first stage, we trained our model for a maximum of
ten epochs and applied early stopping based on a validation
split to select the best checkpoint. In the subsequent stages,
we trained it for up to three and twelve epochs, respectively.
In all stages, we used the AdamW [44] optimizer with the
default parameters and a weight decay value of 0.01. Fur-
thermore, we applied a linear learning rate schedule with
warm-up and minimum and base values of 5e−5 and 1e−4,
respectively. We conducted our experiments on a cluster
consisting of eight A100 GPUs.

4.4. Zero-shot Evaluation

AVSD. We first assessed V2Dial in a zero-shot4 setting on
AVSD. This is in stark contrast to previous models that were
exclusively evaluated in a fine-tuning setting. We instead
advocate for complementing the fine-tuning evaluation set-
ting with a zero-shot one, as it results in a more rigorous
and challenging testbed for the proposed models. To this
end, we establish; to the best of our knowledge; the first
zero-shot benchmark comparison on AVSD comprised of

4This means that the model did not see any of this data previously.



Model AVSD-DSTC10 AVSD-DSTC8 AVSD-DSTC7

B-1 B-2 B-3 B-4 M R C B-1 B-2 B-3 B-4 M R C B-1 B-2 B-3 B-4 M R C
♦MoE-LLAVAarXiv’24 [40] 35.8 18.9 10.1 5.9 15.4 27.1 12.8 39.8 23.9 15.2 10.1 18.7 32.2 23.7 44.7 29.1 19.6 13.8 21.8 37.3 33.2
♦MiniGPT4-videoCVPR’24 [9] 37.9 19.9 11.3 6.8 16.2 28.7 17.7 34.8 17.6 9.7 5.8 15.8 26.3 13.3 37.8 21.2 12.7 8.2 18.4 30.2 17.7
♦Video-ChatGPTACL’24 [45] 24.5 14.7 8.8 5.4 16.7 25.2 3.9 25.5 16.0 10.1 6.4 18.4 27.1 9.1 28.5 18.5 11.8 7.6 20.4 32.1 19.1
♦MST-MIXERECCV’24 [3] 0.1 0.0 0.0 0.0 3.1 6.8 3.0 0.2 0.1 0.1 0.0 3.3 7.1 4.3 0.2 0.1 0.0 0.0 3.4 6.9 4.6
♦VideoChat2CVPR’24 [38] 42.5 25.9 16.0 10.3 18.7 33.1 25.4 43.9 28.1 18.5 12.6 20.8 34.5 29.2 46.7 31.1 20.9 14.4 22.9 37.6 31.4

V2Dial 54.6 34.8 24.0 17.2 19.7 38.3 53.8 53.2 33.8 23.5 16.7 18.8 37.7 49.7 55.5 36.7 26.2 18.7 20.0 39.2 50.8

Table 2. Zero-shot performance comparison on AVSD-DSTC10, AVSD-DSTC8 and AVSD-DSTC7. Best and second-best performances
are in bold and underlined. ♦ indicates that we evaluated the model. (B-n = BLEU-n, M = METEOR, R = ROUGE-L, C = CIDEr).

Model Sent. Trans. R@1 R@5 R@10 MRR NDCG

FROMAGeICML’23 [29] 17.6 20.1 25.1 22.0 16.5
ESPERCVPR’23 [68] n/a 14.6 − − 25.7 22.3
ChampagneICCV’23 [27] − − − − 25.5

♦MoE-LLAVAarXiv’24 [40] 10.6 25.4 36.4 19.6 26.7
♦MiniGPT-videoCVPR’24 [9] 7.4 17.4 26.5 14.6 23.2
♦Video-ChatGPTACL’24 [45] RoBERTa 10.0 22.5 31.5 18.1 24.8
♦MST-MIXERECCV’24 [3] 18.2 22.1 25.7 21.9 24.6
♦VideoChat2CVPR’24 [38] 12.7 29.0 39.9 22.3 30.9

RoBERTa 20.0 30.2 39.3 26.9 33.3
V2Dial OpenAI TE-3 22.1 41.2 48.1 32.7 32.0

Table 3. Zero-shot performance comparison on the VisDial v1.0
val split. OpenAI TE-3 = OpenAI Text Embedding-3large.

recent capable multimodal models. As can be seen from Ta-
ble 2, our model outperforms all baselines by a considerable
margin across 6/7 metrics of AVSD-DSTC8 and AVSD-
DSTC7. On the more recent and challenging version of the
benchmark (i.e. AVSD-DSTC10), V2Dial ranks first across
all metrics. For instance, it more than doubles the CIDEr
score compared to VideoChat2 [38].

VisDial. Additionally, we assessed the same model
checkpoint on VisDial v1.0. As can be seen from Table 3,
V2Dial managed to outperform previous models such as
FROMAGe [29] by a considerable margin across all met-
rics of the dataset. In addition, it outperformed Champagne
[27] that was trained on x4 more dialog data by 7.8 abso-
lute NDCG points. Furthermore, our model outperformed
the more recent baselines of the previous section on 4/5
metrics, underlining it capability of dealing with both video
and image input data types. Finally, replacing the sentence
embeddings generated by RoBERTalarge with those from
OpenAI Text Emedding-3 improved the external ranking of
the candidate answers and resulted in higher scores across
all metrics, as can be seen in the last row of Table 3.

4.5. Fine-tuning Evaluation

AVSD. Similar to almost all previous works on AVSD, we
assessed V2Dial in a fine-tuning setting on all three bench-
marks of the dataset. As can be seen from Table 4, our
model managed to maintain it competitiveness ahead of re-
cent models and outperformed them on the latest and most

challenging AVSD-DSTC10 benchmarks across all evalua-
tion metrics. For instance, it lifted CIDEr by over 6 absolute
points compared to the second-best model. Furthermore,
our model managed to maintain an on par performance with
the state of the art on AVSD-DSTC8 and AVSD-DSTC7.
As shown in Table 4, V2Dial increased their respective
CIDEr scores by over 2 and 3 absolute points compared to
the second-best model.

VisDial. Finally, we fine-tuned our model and MST-
MIXER [3] that had the closest AVSD performance on Vis-
dial v1.0 using the same fully-generative approach. As
can be seen from Table 5, V2Dial managed to outperform
all previous models on the strictest metric of the dataset
by achieving a R@1 score of 44.2. However, when using
OpenAI Text Embedding-3 our model managed to increase
the R@1 and MRR scores to 44.9 and 52.4, respectively,
thereby setting new state-of-the-art results. As expected
and due to the more challenging aspect of a tackling Vis-
Dial as a fully generative task, our model performed slightly
worse than the previous fine-tuned models on the remain-
ing metrics of the dataset. However, when comparing our
model with MST-MIXER that was trained using the same
paradigm (i.e. the last two rows of Table 5), we can see that
our model outperformed it across 4/5 metrics of the task and
scored almost equally on NDCG.

4.6. Domain Shift Evaluation

Zero-shot setting. First, we fine-tuned our model’s
checkpoint from Stage 2 on AVSD and zero-shot evaluated
it on VisDial. As can be seen from the second section of
Table 6, our model’s performance was lifted by a consider-
able margin across most metrics. Notably, the NDCG score
improved by 9 absolute points compared to the results of Ta-
ble 3. Then, we replicated the same experiment on AVSD
after having fine-tuned the model on VisDial. Interestingly,
our model’s performance deteriorated across all metrics of
the benchmark. This behavior could be explained by the na-
ture of both datasets. Whereas AVSD encourages the model
to produce long and elaborate responses, VisDial teaches it
to produce brief answers instead, which diminishes its per-
formance on the language generation metrics. The qualita-



AVSD 

A man sits at a computer desk and fixes the drawer. [...] He gets up 
and picks up laundry and leaves.

Does the man walk into the room?

No the man begins seated in the room.

It appears to be an office.

Is it a office or a bedroom?

[...]

Does he go on his computer at all?

No he does not go on his computer at all.

No.

(Before VisDial)

(After VisDial)

VisDial

A boy is holding his skateboard by a tree.

About how old is the boy in the picture?

Around 8 years old.

It is black and white.

What color is the skateboard?

[...]

Is the boy sitting or standing?

Standing.

He is standing the whole time.

(Before AVSD)

(After AVSD)

Figure 5. Zero-shot qualitative examples of V2Dial before and after fine-tuning on VisDial and AVSD. The former teaches the model to
answer question with brief responses whereas the latter teaches it to produce longer and more elaborate answers.

Model AVSD-DSTC10 AVSD-DSTC8 AVSD-DSTC7

B-1 B-2 B-3 B-4 M R C B-1 B-2 B-3 B-4 M R C B-1 B-2 B-3 B-4 M R C

PDCICLR’21 [33] − − − − − − − 74.9 62.9 52.8 43.9 28.5 59.2 120.1 77.0 65.3 53.9 44.9 29.2 60.6 129.5
THAMEMNLP’22 [66] − − − − − − − 76.4 64.1 53.8 45.5 30.1 61.0 130.4 77.8 65.4 54.9 46.8 30.8 61.9 133.5
DialogMCFTASLP’23 [18] 69.3 55.6 45.0 36.9 24.9 53.6 91.2 75.6 63.3 53.2 44.9 29.3 60.1 125.3 77.7 65.3 54.7 45.7 30.6 61.3 135.2

♦VideoLLAMA 2arXiv’24 [20] 50.2 35.0 24.9 18.1 21.8 42.8 57.5 53.3 39.0 29.1 22.2 24.8 46.3 74.0 56.2 41.1 30.7 23.2 26.4 48.5 79.2
MST-MIXERECCV’24 [3] 69.7 57.1 47.2 39.5 25.1 54.0 96.9 77.1 65.6 55.7 47.1 30.2 61.8 133.6 78.4 66.0 55.8 47.1 31.0 62.0 136.5

V2Dial 70.7 58.2 48.2 40.3 26.0 55.4 103.3 76.8 65.5 55.8 47.5 30.4 62.1 135.7 78.9 66.5 56.1 47.4 31.2 62.3 139.8

Table 4. Fine-tuning performance comparison on AVSD-DSTC10, AVSD-DSTC8 and AVSD-DSTC7. VideoLLAMA 2 [20] was trained
on AVSD amongst other datasets. Additional model comparisons can be found in the supplementary material.

Model Sent. Trans. R@1 R@5 R@10 MRR NDCG

LTMIECCV’20 [49] 40.4 61.6 69.7 50.7 63.5
LTMI-LGEMNLP’21 [17] 41.3 61.6 69.0 51.3 63.2
GoGACL’21 [16] n/a 41.2 61.8 69.4 51.3 62.6
UTCCVPR’22 [15] 41.3 59.8 66.3 50.6 61.0
ChampagneICCV’23 [27] − − − − 62.5

♣MST-MIXERECCV’24 [3] RoBERTa 42.2 51.6 57.8 47.7 52.5

RoBERTa 45.4 54.7 61.1 50.9 54.0
V2Dial OpenAI TE-3 46.1 59.3 65.7 53.2 53.1

Table 5. Fine-tuning performance comparison on the VisDial v1.0
val split. ♣ indicates that we trained and evaluated the model.

tive examples of Figure 5 clearly illustrate this phenomenon
on both datasets.

Fine-tuning Setting. We first experimented with a cur-
riculum learning strategy where we used one dataset for pre-
training before finally fine-tuning on the other. As can be
seen from the last section of Table 6, this training paradigm
resulted in performance drops on both datasets compared to
Table 4 and Table 5 where the model was only trained on
the data of the respective benchmark. This indicates that

the converged model’s weights on one dataset do not offer
a good initialization for training on the remaining one. Al-
lowed by our model design that can jointly handle video and
image input data, we finally fine-tuned one single model on
both datasets simultaneously. As seen from the last row
of Table 6, this resulted in the best joint performance of
our model across the two datasets. Although the results
on AVSD slightly dropped compared to Table 4, our model
lifted its performance on VisDial by a considerable margin.
This could largely be attributed to the same previous ob-
servation, as training on VisDial incentivizes our model to
shorten its responses on AVSD. Additional qualitative ex-
amples can be found in the supplementary material.

4.7. Expert Swapping Experiment

In order to validate the specialization of each expert, we
conducted a swapping experiment where we routed some
features through inadequate experts. We first swapped ex-
perts of the same modality (i.e., experts operating on vision
or language data). As shown in Table 7, this resulted in
performance drops across all metrics of both datasets, indi-



Fine-tuning data AVSD-DSTC10 AVSD-DSTC8 AVSD-DSTC7 VisDial

AVSD VisDial B-1 M R C B-1 M R C B-1 M R C R@1 R@5 R@10 NDCG

✗ ✗
Zero-shot (from Table 2 and Table 3)

54.6 19.7 38.3 53.8 53.2 18.8 37.7 49.7 55.5 20.0 39.2 50.8 20.0 30.2 39.3 33.3

✓ ✗
Fine-tuning (from Table 4) Zero-shot

70.7 26.0 55.4 103.3 76.8 30.4 62.1 135.7 78.9 31.2 62.3 139.8 12.8 36.7 50.8 42.3

✗ ✓
Zero-shot Fine-tuning (from Table 5)

11.5 6.8 20.1 14.6 11.5 7.3 20.7 20.9 7.9 6.2 17.4 18.2 44.2 53.3 59.5 52.3
Fine-tuning

✓ → ✓ − − − − − − − − − − − − 42.2 50.1 56.3 51.3
✓ ← ✓ 69.6 25.7 55.0 100.5 75.9 29.8 61.4 132.1 77.6 30.4 61.5 134.5 − − − −
✓ & ✓ 69.3 25.4 54.8 99.9 75.1 29.3 61.1 130.0 77.3 30.0 61.7 134.5 45.4 54.7 61.1 54.0

Table 6. Domain shift evaluation between the respective most prominent video and visual dialog datasets of AVSD and VisDial. □ → △
means that the model was pre-trained on dataset □ before fine-tuning on dataset △.

Expert AVSD-DSTC7 VisDial

Swapping B-1 M R C R@1 NDCG

Original 78.9 31.2 62.3 139.8 44.2 52.3
Swapping experts of the same modality (vision / language)
Espa ↔ Etmp 77.0 29.5 61.2 133.7 − −
Ecap ↔ Ectx 76.1 29.6 60.3 131.1 42.8 51.9
Swapping experts of different modalities
Espa ↔ Ecap 28.5 10.7 22.0 10.1

35.7 45.3
Etmp ↔ Ectx − −
Espa ↔ Ectx 34.4 12 25.4 11.7

32.4 42.9
Etmp ↔ Ecap − −

Table 7. Expert swapping results. E□ ↔ E△ means that the □
features are inadequately routed at test time through E△ and vice
versa. The other experts remain unchanged.

cating that experts of the same modality are able to capture
the semantic nuances of the data they specialize on. More
interestingly, the performance of our model dropped more
significantly when swapping experts of different modalities,
as seen from the last section of Table 7. This showcases
their ability to adjust to the nature of the data they process
and to capture its modality specific features.

4.8. Ablation Study

Effect of Pre-training Data. To assess the effectiveness
of the pre-training data in the first two stages, we trained
two versions of our model, where one was only pre-trained
on Stage 1 using WebVid-2M & CC-3M and the other only
on Stage 2 with a subset of Champagne. As can be seen
from the middle section of Table 8, our model witnessed
a comparable drop in performance compared to the full
model. This underlines the equal importance of these pro-
posed training stages to the joint down-stream performance
on AVSD and VisDial. We did not conduct ablations using
either WebVid-2M or CC-3M in Stage 1 as this was suffi-
ciently explored by other recent works [19] that showed the
benefit of pre-training on both image and video data.
Effect of Pre-training Objectives & Model Design. To
evaluate the effect of the newly introduced spatial-temporal

Model Ablations AVSD-DSTC7 VisDial

B-1 M R C R@1 NDCG

Full 78.9 31.2 62.3 139.8 44.2 52.3
w/o Tr. Stage 1 76.9 30.0 61.4 134.0 34.5 44.6
w/o Tr. Stage 2 77.8 30.7 61.7 134.7 32.6 44.1
w/o Lstc & Lstm 77.2 29.9 61.1 133.2 33.1 44.6
w/o separate Espa & Etmp 77.0 30.1 61.1 133.8 32.9 43.8
w/o experts {E∗} 77.5 30.0 61.4 134.8 30.6 42.2

Table 8. Ablation results.

objectives, we trained a version of our model without Lstc
and Lstm in Stage 1 using the same schedule and training
data as our full model. As shown in the fourth row of Ta-
ble 8, this ablated version suffered a performance drop not
only in AVSD but also in VisDial. This indicates that these
losses improve not only the temporal capabilities of our
model but also its spatial ones. Then, we trained a version
that sequentially applies spatial and temporal attention, as in
[13, 19]. Since this version does not have separate spatial-
temporal experts, we also omitted the previous two objec-
tives. As seen in the penultimate row of Table 8, this version
underperformed our full model on both datasets, showcas-
ing the effectiveness of our approach. Finally, we trained a
version without all the expert layers. As shown in the last
row, its performance dropped compared to our full model
and performed the worst on VisDial.

5. Conclusion

In this work we presented V2Dial – a model that can jointly
tackle video and visual conversational tasks using a multi-
modal expert-based approach that; for the first time, disen-
tangles the learning of the spatial and temporal features of
images and videos using two separate experts. Extensive
evaluation on the respective widely used video and visual
dialog datasets of AVSD and VisDial show that our model
achieves new state-of-the-art zero-shot and fine-tuning per-
formance. Finally, we conducted the first domain shift eval-
uation of AVSD and VisDial and provided insights on how
to optimally leverage their respective training data.
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A. Training Details
A.1. Training Objectives

In addition to the proposed spatial-temporal contrastive
learning (STC) and spatial-temporal matching (STM), we
trained our model with the following established vision-
language objectives.

Masked Language Modeling teaches the model to pre-
dict masked text tokens given both the visual and textual
context. As in [19, 36] we mask 15% of the tokens and
minimize the loss

Lmlm = E(Vvis,T̄cap) [H(ymlm
,p

mlm)] , (20)

where ymlm and p
mlm denote the ground-truth and predicted

probabilities of the masked tokens whereas V
vis and T̄

cap

are the visual and masked caption token embeddings, re-
spectively.

Vision-Text Contrastive Learning helps the model bet-
ter align the video/image and the text features and is defined
similarly to STC as

Lvtc =
1

2
E(Vvis,Tcap) [H (yv2t

,p
v2t) +H (yt2v

,p
t2v)] , (21)

where p
v2t and p

t2v are the softmax normalized vision-
to-text and text-to-vision similarities defined as in Equation
14 and Equation 15 of the main text. yv2t and y

t2v are their
respective ground-truth one-hot similarities.

Vision-Text Matching is defined similarly to STM as a
binary classification problem and complements the VTC by
teaching the model to distinguish between matched and un-
matched paired vision-text features. We use a video/image
and its corresponding caption as a positive example. The
negative examples are constructed via negative sampling of
captions from different visual inputs. Formally,

Lvtm = E(Vvis,Tcap) [H(yvtm
,p

vtm)] , (22)

where p
stm and y

stm are the predicted and the ground-truth
two-class probabilities, respectively. For completeness, we
list the detailed hyperparameters of our model in Table 9.

Category Hyperparameter

Model

Number of expert-based layers N 12
Number of multimodal experts layers L 9
Number of fusion experts layers (N − L) 3
Joint hidden dimension D 1024
Number of frames F 4
Number of patches per frame P 64
Hidden dimension of LLM 1024
Dimension of LLM linear layer (1024, 1024)
Dimension of linear layers Θ∗ (1024, 256)

Optimization

Optimizer AdamW
Learning rate schedule linear
Minimum learning rate value 5e − 5
Base learning rate value 1e − 4
Weight decay 0.01
Gradient clipping value 1.0
Effective batch size 48

Hardware
GPU model A100
Number of GPUs 8
Distributed training DDP

Table 9. Detailed hyperparameter setting of V2Dial .

B. Additional Model Comparisons
To complement Table 4 of the main text, we compared our
model with additional fine-tuned baselines on the early two
versions of AVSD (i.e. AVSD-DSTC8 and AVSD-DSTC7).
As shown in Table 10, V2Dial managed to outperform these
baselines as well across all metrics of the dataset.

C. Qualitative Samples
We provide additional qualitative samples comprising of
both success and failure cases of our model. Figure 6 and
Figure 7 illustrate some zero-shot samples for AVSD and
VisDial, respectively. Additional fine-tuning examples for
both datasets are shown in Figure 8 and Figure 9.

As defined in Section 3.1 of the main text, we denote
with C, Hr, and Qr the caption, the dialog history, and the
current question, respectively. Similar to Figure 5 of the
main text, we highlight the caption in green , the dialog
history in orange , and the current question-answer pair in

blue for zero-shot and pink for fine-tuning evaluation.

Furthermore, we use the symbols and to indicate
the generated and the golden ground-truth answers, respec-
tively. / mark success / failure cases. For VisDial,
we additionally use to show the top ranked candidate
answers (i.e. the most similar to the generated responses).
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He is sitting on the bed and looking at the camera.

A man is sitting in a room facing a stand with a laptop on it smiling at 
a camera, sneezes twice, grabs medicine and takes it.

Is the boy in the room when the video starts ?

Yes, the boy is in the room from the start.

What is he doing on the bed?

He is sitting on the bed.

C

Hr

Qr

Ar

He sprayed the cabinet and wiped it down.

A man is  in the bathroom,  he takes off his shirt and  drops it on  the 
floor [...]

What is the man doing in the beginning of the video?

He's standing in the bathroom looking around.

C

Hr

Qr

Ar

After he picks up the items what does he do?

He starts wiping the cabinets.

[...]

She sweeps the floor with a broom.

A woman holding a cup bends down to put it in a bucket next to her. 
She then grabs a broom and starts sweeping the floor .

A lady puts a can in to a bucket.

How does the video start?

C

Hr

Qr

Ar

Then what does she do?

She is sweeping the floor.

[...]

He's gathering clothes and putting them in a bag.

A man is sitting on a sofa and  throwing clothes into a bag.  He picks up the 
bag and walks out an open door.

How many people are in the video?

I can see one but someone else is 
talking.

What is the man in the video doing?

Sitting on a couch.

C

Hr

Qr

Ar

A woman gets up out of bed and puts a sweatshirt on. She goes over to get
a hairbrush and starts brushing her hair while looking in the mirror.

Is the person sleeping to begin with?

Yes, she is sleeping and then gets up 
from her bed.

Does she stretch once she gets up?

Yes, she does stretch once she gets up.

C

Hr

Qr

Ar

No, she never stretches in the video.

This appears to be in a bathroom.

No dialog hitory available

A boy  stands trying to  fix something with a tool. He  then  comes into the 
hallway and stretches. Then he walks further to pick up a cup and drink.

Where does the video happens?

In a home.

C

Hr

Qr

Ar

Figure 6. Zero-shot qualitative examples on AVSD. We denote with C, Hr , Qr , Ar the caption, the dialog history, the current question,
and its response as generated from our model, respectively. ( = generated answers, = golden ground-truth answers, / =
success / failure cases).



[...]

Yes, they are all wearing shirts.

The people are standing on the tennis courts outside.

Is it sunny ?

Yes, but i can't see the sky.

Are they wearing shirts?

Yes, they are wearing shirts.

Yes, they are all wearing shirts.

C

Hr

Qr

Ar

Green.

A zebra looks down at the ground as it walks across a plainfield.

Do the trees have leaves?

Yes.

Are they green or fall color?

They appear to be green.

Green.

C

Hr

Qr

Ar

[...]

Alone.

A small child on the beach, walking past a stop sign.

Is the child wearing a bathing suit ?

No, a winter coat.

Is she alone or with someone?

She is alone on the beach.

Alone.

C

Hr

Qr

Ar

[...]

Yes.

A family of 3 is on a beach flying a kite.

Is the photo in color?

Yes.

Is the family comprised of parents and 1 kid?

Yes, there is a child.

A boy.

C

Hr

Qr

Ar

[...]

I can't see that.

A brown bench sits in a grassy field full of wildflowers.

Are the flowers colorful?

They are pink and white.

Is there a path or sidewalk?

I don 't see a path or sidewalk.

No there is no sidewalk.

C

Hr

Qr

Ar

Yes.

A man driving a horse drawn carriage down a road.

What color is the carriage ?

White with green seats.

Does it have a top on it?

Yes it does have a top on it.

Yes it does!

C

Hr

Qr

Ar

Figure 7. Zero-shot qualitative examples on VisDial. We denote with C, Hr , Qr , Ar the caption, the dialog history, the current question,
and its response as generated from our model, respectively. ( = generated answers, = top ranked candidate answers, = golden
ground-truth answers, / = success / failure cases).

[19] Feng Cheng, Xizi Wang, Jie Lei, David Crandall, Mohit
Bansal, and Gedas Bertasius. VindLU: A Recipe for Effec-

tive Video-and-Language Pretraining. In CVPR, 2023. 3, 4,
8, 9



He was watching tv on the floor.

Man watches television on a rug placed on the floor. [...] and he stands 
to grab a pillow, which he drops to the floor.

How many people are in the video?

There is only one person, which is the man.

What is the man doing on the floor?

He is sitting on the floor watching tv.

C

Hr

Qr

Ar

[...]

It seems to me he is prepping something.

The man is in the kitchen making something. [...] The man is holding 
a book in his hand then walks away.

How many people are in the video?

One person is in the video.

C

Hr

Qr

Ar

After he picks up the items what does he do?

He is opening the fridge.

[...]

The kitchen appears to be very clean.

A person is working on something at a kitchen counter. He then walks 
and opens a fridge before closing it to reach for something on a shelf.

There is just one man in the video.

How many people are in the video?

C

Hr

Qr

Ar

Is the kitchen clean or messy?

The kitchen appears to be clean.

[...]

That is how the video ends.

A guy puts a lid back on a bottle and sets it down. He drinks something. Then
he backs up and points to the cat on the floor and smiles.

Is the man wearing one shoe? 

yes he only has one shoe.

What does he do after laughing?

He sets the cup down.

C

Hr

Qr

Ar

[...]

A woman gets up out of bed and puts a sweatshirt on. She goes over to get
a hairbrush and starts brushing her hair while looking in the mirror.

Is the person sleeping to begin with?

Yes, she is sleeping and then gets up 
from her bed.

Does she stretch once she gets up?

No, she does not stretch.

C

Hr

Qr

Ar

No, she never stretches in the video.

He take a photo out of the window.

This guy is sitting with his phone in the kitchen and reading it. He 
eats part of a snack then his friend joins him to look at it, too.

Does anything else happen after that?

No that is all that happens.

C

Hr

Qr

Ar

[...]

Are there just the two people?

Yeah there are just two people.

Figure 8. Fine-tuning qualitative examples on AVSD. We denote with C, Hr , Qr , Ar the caption, the dialog history, the current

question, and its response as generated from our model, respectively. ( = generated answers, = golden ground-truth answers, /
= success / failure cases).



[...]

Holding it.

A person gripped on a sheep neck.

Is she petting the sheep?

No.

What is she doing to the sheep?

Holding it.

Holding it.

C

Hr

Qr

Ar

I can't see their faces.

A tour bus in front of a large mountain.

Is the bus big or small?

I think big, I can only see half of it.

Do the people look happy?

I can't see their faces.

I can't see their faces.

C

Hr

Qr

Ar

[...]

[...]

It is sunny, but there are a few clouds.

A sunny day at the shore with a kite in the sky.

Does this picture take place in a public beach ?

I can't tell if it's public or private.

What is the weather like?

It's sunny with a few clouds.

It is sunny, but there are a few clouds.

C

Hr

Qr

Ar

Metal.

A spacious black and white open plan kitchen.

Can you see all of the appliances?

The fridge and dishwasher.

What are they made out of?

Stainless steel.

Silver.

C

Hr

Qr

Ar

[...]

15 feet tall.

A black decorative clock tower [...] in a green park full of trees.

Any people ?

No people.

How big is the clock?

It's pretty big.

Pretty big.

C

Hr

Qr

Ar

It looks urban.

A clock directly over 3 statues which are over a bridge.

Can you see the time on the clock ?

yes, it is 7:20.

Does it look like an urban or country setting?

I can't tell.

I cannot tell.

C

Hr

Qr

Ar

[...]

Figure 9. Fine-tuning qualitative examples on VisDial. We denote with C, Hr , Qr , Ar the caption, the dialog history, the current

question, and its response as generated from our model, respectively. ( = generated answers, = top ranked candidate answers, =
golden ground-truth answers, / = success / failure cases).
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