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ABSTRACT
Pursuit eye movements have become widely popular because they
enable spontaneous eye-based interaction. However, existing meth-
ods to detect smooth pursuits require special-purpose eye trackers.
We propose the first method to detect pursuits using a single off-
the-shelf RGB camera in unconstrained remote settings. The key
novelty of our method is that it combines appearance-based gaze
estimation with optical flow in the eye region to jointly analyse
eye movement dynamics in a single pipeline. We evaluate the per-
formance and robustness of our method for different numbers of
targets and trajectories in a 13-participant user study. We show that
our method not only outperforms the current state of the art but
also achieves competitive performance to a consumer eye tracker
for a small number of targets. As such, our work points towards
a new family of methods for pursuit interaction directly applica-
ble to an ever-increasing number of devices readily equipped with
cameras.
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1 INTRODUCTION
In recent years, Pursuits has emerged as the first gaze interaction
technique that allows for both natural and spontaneous, calibration-
free interaction with dynamic user interfaces. It relies on smooth
pursuit eye movements that are performed when following a target
moving along a continuous trajectory at an appropriate speed. By
correlating these eye trajectories with those of on-screen objects,
the single target the user is following with his/her eyes can be
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Figure 1: We propose a novel method to detect pursuits us-
ing a single off-the-shelf RGB camera. Our method jointly
analyses the eye gaze direction and optical flow in the eye
region to identify the target the user is following.

robustly identified. The original paper introducing Pursuits [Vidal
et al. 2013] has therefore spurred a large number of works resulting
in both variants of the method itself [Khamis et al. 2016a] as well as
applications in various interactive settings such as public displays
[Khamis et al. 2016b], smartwatches [Esteves et al. 2015], or virtual
reality [Khamis et al. 2018b].

However, all of these works require special-purpose eye track-
ing equipment, i.e. dedicated devices built and sold specifically
for this task. Unlike other gaze interaction techniques such as
dwelling [Bednarik et al. 2009] or gaze gestures [Bâce et al. 2016;
Drewes and Schmidt 2007], Pursuits does not require a calibrated
eye tracker. However, robust tracking of the relative movement of
the eyes is fundamental to the technique. Moreover, dedicated eye
trackers may not always be available or may be difficult to integrate
into the small form factor of some devices, such as mobile phones.
Several works have proposed methods that implement Pursuit-like
interactions for other body parts [Clarke et al. 2016], such as the
hands or arms [Carter et al. 2016], based on off-the-shelf cameras
and computer vision. However, computer vision-based techniques
for Pursuit interaction using gaze have not been explored as of yet.

We propose a novel method to detect pursuits using a single
off-the-shelf RGB camera in unconstrained remote settings. Our
method combines appearance-based gaze estimation and optical
flow into a joint pipeline and is, therefore, able to capture both the
gaze direction and the eye movement dynamics during a pursuit
movement (Figure 1). On the one hand, the full-face appearance-
based gaze estimator [Zhang et al. 2017] predicts the 2D point of re-
gard from a single image. By correlating the gaze estimates and the
position of the moving target using the Pearson product-moment
correlation, we obtain a first target candidate. On the other hand,
our method uses dense optical flow [Farnebäck 2003] in the eye
region extracted from a series of normalised face images to estimate
the eye movement direction. Our method then correlates the eye
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movement directions and the target motions using cosine similarity
to obtain a second target candidate. By combining the two different
perspectives on eye movements and aggregating the outputs from
both approaches, our method shows increased robustness.

The specific contributions of our work are two-fold. First, we
present a novel method to detect pursuits in unconstrained remote
settings, which does not require any special-purpose eye tracking
equipment but only a standard off-the-shelf RGB camera. Second,
we evaluate our method in a 13-participant user study and show
that it outperforms the current state of the art EyeFlow [Hassoumi
et al. 2019] by a large margin. For a small number of targets, our
method achieves over 90% accuracy (the percentage of correctly
identified targets) and is even competitive with a consumer eye
tracker. As such, our work paves the way for a new class of methods
that enable spontaneous Pursuits interaction in the wild.

2 RELATEDWORK
Our research relates to previous work on 1) smooth pursuit inter-
action, 2) gaze estimation, and 3) optical flow estimation.

2.1 Smooth Pursuit Interaction
Selecting a target from multiple user interface (UI) elements is a
key task in gaze-based interaction [Sibert and Jacob 2000]. Pur-
suits [Vidal et al. 2013] is a recent alternative to pointing that
has a wide range of applications, including interaction with pub-
lic displays [Khamis et al. 2015, 2016b] or smartwatches [Esteves
et al. 2015]. Other works investigated the use of Pursuits with other
body parts, e.g. to control ambient devices with the hands [Vel-
loso et al. 2016] or to provide secure input of PINs [Cymek et al.
2014] or passwords [Almoctar et al. 2018]. An advantage of the
technique is that it is robust to partially hidden trajectories [Mat-
tusch et al. 2018]. Further work optimised the method itself [Velloso
et al. 2018] and extended possible use cases to novel tasks, such
as text entry [Drewes et al. 2019]. Rather than using Pursuits for
interaction, others instead used it as an implicit calibration method
for eye trackers [Celebi et al. 2014; Pfeuffer et al. 2013].

While Pursuits enables novel interactive experiences, the need for
special-purpose eye tracking equipment hinders its broader appli-
cability. In contrast, our method only requires a single RGB camera,
e.g. a webcam. The closest work to ours is EyeFlow [Hassoumi et al.
2019], but that work was designed for a wearable, head-mounted
setting in which the camera is mounted close to the eyes, and there-
fore requires a high-resolution eye image. Moreover, their method
assumes that the camera is rigidly attached to the user’s head – an
assumption that no longer holds in remote settings. As such, we are
first to propose a method that tackles the particularly challenging
remote setting in which users are at a distance and the user’s eyes
constitute only a small, low-resolution part of the full camera view.

2.2 Gaze Estimation
Gaze estimation is the task of estimating a user’s 3D gaze direction
or 2D point of regard. While early works required pupil detection
or (infrared) illumination [Li et al. 2005; Morimoto et al. 2000],
more recent methods directly use the face’s and eye’s appearance
leveraging large datasets and machine learning [Zhang et al. 2015,
2019b]. For example, Zhang et al. proposed a full-face appearance-
based gaze estimator trained on the MPIIFaceGaze dataset [Zhang

et al. 2017], while Krafka et al. introduced a convolutional neural
network (CNN) trained on the large-scale GazeCapture dataset for
mobile gaze estimation [Krafka et al. 2016]. Learning-based meth-
ods have already outperformed feature- or model-based approaches
and have shown increased robustness in unconstrained settings
even without calibration. However, angular errors between 4◦ and
6◦ still prevent them from being used in high-accuracy applications.

Part of our method uses one such generic appearance-based gaze
estimator [Zhang et al. 2019a; Zhang et al. 2017] trained on the
GazeCapture dataset. User or model adaptation through calibra-
tion could have further increased its performance [Zhang et al.
2018a], but this contradicts the concept of spontaneous calibration-
free interaction. Instead, for increased robustness, we propose to
additionally capture eye movement dynamics using optical flow.

2.3 Optical Flow Estimation
Optical flow estimation is a computational task in computer vision
with the goal of estimating the apparent motion of the pixels in the
image plane. It is widely used in applications such as object detec-
tion and tracking [Hua et al. 2018], semantic segmentation [Sevilla-
Lara et al. 2016], or activity recognition [Simonyan and Zisserman
2014] because it serves as an approximation of the real physical
motion. Methods that estimate sparse optical flow only examine
a reduced number of pixels or features in an image [Lucas and
Kanade 1981]. In contrast, dense optical flow estimates the flow
vectors for all pixels in the entire image [Farnebäck 2003], which
leads to increased performance at the cost of being computationally
slower. The current state of the art in optical flow estimation is
end-to-end deep learning models such as FlowNet2 [Ilg et al. 2017].

We are the first to leverage both static and dynamic information
about eye motion to detect smooth pursuit eye movements. To
estimate the motion of the eye, for maximum performance, we
leverage a dense optical flow method [Farnebäck 2003].

3 METHOD
To detect whether a user is following a moving UI element, our
method combines appearance-based gaze estimation and optical
flow in the eye region to jointly analyse the eye movement dynam-
ics during a pursuit (Figure 2 for an illustration). Given a sequence
of images, our method first detects the user’s face and the facial
landmarks in each image individually. Face bounding boxes are
detected using three multi-task CNNs [Zhang et al. 2016] and an
hourglass network [Deng et al. 2018] then predicts 68 facial land-
marks inside the detected bounding box, which are then further
used in the single components.

3.1 Gaze Estimation
The goal of the gaze estimation component is to correlate the 2D
gaze estimates from a window of N images to the 2D coordinates
of all moving UI elements. The output of this component is either
a candidate target if the correlation value is over a predefined
threshold, or None if no target can be detected.

Face Image Normalisation. Face image normalisation is an ef-
fective preprocessing step in appearance-based gaze estimation
[Zhang et al. 2018b, 2015]. By rotating and scaling the input image,
normalisation cancels out differences in user appearance caused by
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Figure 2: Overview of our method that consists of two components running gaze estimation and optical flow to first indepen-
dently correlate eyemovements to the objects’ motion trajectories and thereby estimate the target the user is following. These
estimates are then combined to make a joint decision about the single most likely followed on-screen target.

the user-camera distance or different hardware setups. Normalisa-
tion requires an estimate of the user’s head pose that can be defined
as the 3D translation and rotation of the head relative to the camera.
To estimate the 3D head pose, we opted to use the method proposed
in [Bâce et al. 2019] that has shown improved robustness to appear-
ance variability across users and head pose angles. Given the 3D
head pose, the input image is warped to a normalised space with
fixed parameters and cropped to a size of 448x448 px (Figure 2 A1).
We use these images to train the appearance-based gaze estimator.

Appearance-based Gaze Estimation. Our method uses a full
face appearance-based gaze estimator [Zhang et al. 2019a; Zhang
et al. 2017] trained on the GazeCapture dataset [Krafka et al. 2016]
to predict 3D gaze directions. While collected for gaze estimation
on mobile devices, training on this dataset is still beneficial given
its large number of participants (over 1’400) and training images
(over two million). The gaze estimation is, therefore, able to better
abstract away data-specific biases caused, for example, by variability
in user appearance. On GazeCapture the average angular error is
around 4.3◦ while in a cross-dataset setting the error increases to
around 5.3◦ on the MPIIFaceGaze dataset [Zhang et al. 2017], which
is state of the art for appearance-based gaze estimation.

Motion Correlation. For every image captured by the camera,
the appearance-based gaze estimator outputs the 3D gaze direction
in terms of yaw and pitch angles in the camera coordinate system.
We intersect this vector with the XY camera plane (z = 0) to obtain
the 2D point of gaze. Given multiple 2D gaze points over time, we
use the Pearson product-moment correlation for the X and Y axis
separately to identify which moving target is the most similar. We
also account for cases in which it is impossible to calculate the
correlation because one series has a variance of zero, i.e. the series
together constitute a horizontal or vertical line, by rotating that
line including the corresponding gaze estimates by 45◦, similar to

[Velloso et al. 2018]. In the original approach [Vidal et al. 2013],
the axis with zero variance is discarded. However, this results in
an unnecessary loss of information. When the correlation values
for both axes are over a threshold, a candidate target is identified.
In the case of multiple candidates, the method selects the one with
the maximum sum of both the horizontal and vertical similarity.

3.2 Optical Flow
The goal of the optical flow component is to complement the gaze
estimator and provide more robust correlations between the move-
ment of the eyes and UI elements. This dual-branch approach ex-
ploits a fundamental difference between optical flow and gaze esti-
mation. Gaze estimation only considers a single image, i.e. predicts
the 3D gaze direction or 2D point of regard from one image frame.
Optical flow, on the other hand, can capture the movement between
consecutive frames and analyse in which direction the eyes move,
and outputs a motion vector instead of an absolute point of regard.

Face Image Normalisation. The normalisation step is very sim-
ilar to the one performed for the gaze estimation task except for
one key difference. In the original method [Zhang et al. 2018b], the
input image was rotated so that the X -axis of the head coordinate
system is parallel to the X -axis of the camera coordinate system.
By applying such a rotation, we would also rotate the movement
direction of the eyes, which would no longer match the movement
of the UI element shown on the screen. Therefore, in the face image
normalisation step for optical flow, we transform the input image
to a space where the normalised camera points at the centre of the
face, yet without cancelling out the head roll, i.e. rotation of the
X axis. The image is still scaled so that the resulting normalised
face has a similar appearance in terms of shape and size across
users. Normalising the input image is beneficial to the optical flow
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estimation task since the same set of parameters (e.g. similarity
threshold) will work for different users or hardware configurations.

DenseOptical Flow andMotionCompensation. Weuse dense
optical flow to estimate the pattern of apparent motion between
two image frames [Farnebäck 2003]. If the camera has a clear view
of only the eye (e.g. EyeFlow [Hassoumi et al. 2019], the optical flow
between two consecutive frames provides robust information on
eye motion. In contrast, in remote settings, users are at a distance
and the camera cannot capture the eye in high resolution. As such,
calculating the optical flow between every two consecutive frames
introduces too much noise relative to the little actual motion in the
eye. In our method, we therefore instead calculate the optical flow
every couple of frames, leading to more robust motion estimates.
We set this parameter, the compute-rate, to 5 empirically.

Our method estimates dense optical flow between two nor-
malised face images (Figure 2 B2). In general, optical flow is either
due to object motion in the image or camera motion. Image normal-
isation transforms the input image to an image with fixed camera
parameters. Since the position of the normalised camera depends
on the detected facial landmarks and the head pose estimate, it
slightly differs between frames, which causes the camera to appear
as if it was moving. Directly estimating the optical flow would
lead to incorrect flow vectors. To address this, we apply motion
compensation to decompose visual motion into dominant motion
caused by the camera or the background as well as residual motion
caused by the user. Specifically, we use a method that estimates
a 2D affine transformation model between two frames to cancel
out the dominant motion, i.e. the normalised camera motion in
our case [Jain et al. 2013]. The output of this step is the motion
compensated optical flow.

EyeMovementDirectionEstimation. To estimate the eyemove-
ment direction, we use the compensated dense optical flow in the
eye region. Our method requires only one eye, and in our imple-
mentation, we chose the user’s right eye. We select the flow vectors
that are inside the eye polygon defined by the six eye landmarks
(Figure 2 B3). We then compute Shannon’s entropy to measure
the amount of disagreement among the flow vectors as proposed
in [Hassoumi et al. 2019] and drop frames with an entropy exceed-
ing a certain threshold. The eye movement direction is calculated
by averaging the flow vectors in Cartesian space.

Eye and Object Motion Correlation. For the same pair of time
points for which the optical flow vector was computed, we calculate
a motion vector for each object by computing the difference vector
between the objects’ positions. We can then calculate the similarity
between eye motion and each object’s motion by computing the
cosine similarity of the optical flow vector and the object motion
vector. This value ranges from -1 for vectors pointing in opposite
directions (a 180◦ angle) to 1 for vectors which point in the same
direction (a 0◦ angle). To obtain similarities between a sequence
of optical flow motion vectors and a set of objects, we compute
the mean similarity µo over the similarities of each optical flow
vector to the corresponding objects’ motion vectors for each object
o. While the object motion is a precisely known quantity, the optical
flow vectors might contain outliers pointing away from the general
direction, which are detrimental to the goal of a robust average

similarity. To avoid this effect, we remove similarities which lie
outside of the interval [µo −2σo , µo +2σo ], where σo is the standard
deviation over all similarities for object o. Finally, among all objects
whose mean similarities exceed a certain threshold, we select the
onewith themaximummean similarity to the target. If the threshold
is not reached at all, we return None.

3.3 Joint Gaze Estimation and Optical Flow
To combine our two sub-components, we calculate target detections
from each of them. This can either be a specific object or None if no
object was determined to be the target for that window. We simply
merge detections by checking whether they agree or not, where
None counts as neutral, i.e. if one of the two detections is None, we
use the other as the merged window detection (Figure 1). If both
detections are None or they contradict each other, we select None.
Naturally, if the detections agree, we select that common detection.
Running our method results in a sequence of merged detections
representing (overlapping) windows of frames. To improve the ro-
bustness of our method, instead of simply selecting the first merged
detection that is not None as the target, we take several consecutive
detections into account. We examined several voting schemes, both
on fixed or variable length voting windows of detections. The best
voting scheme we found is to select the object which is the first
to be jointly detected as target three times, i.e. obtains three votes.
These three detections do not have to be in direct succession.

Overall, our method has several free parameters: the window
size, i.e. the number of image frames in a window; the stride, i.e. the
number of frames two subsequent windows differ in; the threshold
for the gaze correlation values; the threshold for the cosine simi-
larity in the optical flow component; and the number of necessary
votes for a target to be selected when combining detections.

4 EVALUATION
4.1 Evaluation Dataset
For evaluation, we collected a novel dataset from 13 participants
(three female, M=28.9 years old, SD=8.06, age range 23 to 50). Partic-
ipants were seated in front of a 24” computer display to which we
attached a Microsoft LifeCam Cinema Business webcam (recording
resolution: 1280x720 px at 30 fps) on the top and a dedicated eye
tracker, the Tobii 4C, which we use for comparison, on the bottom
edge as recommended by the manufacturer. We did not constrain
the participants in any way in terms of position, distance to the
screen, or head movement. The only constraint was imposed by
the Tobii eye tracker, which has an operating distance between
50 cm and 95 cm. When users are 75 cm away from the screen, the
tracking box is 40 x 30 cm, as defined by the manufacturer.

In terms of head movement, the majority of the image samples in
the normalised camera space cover vertical angles between 0◦ and
−25◦ (min −40.83◦, max 73.6◦) and horizontal angles between −20◦
and 20◦ (min −37.13◦, max 31.95◦). Most vertical angles, i.e. the
pitch, are negative due to the head’s position relative to the camera:
The camera was mounted above the screen while the participants
were looking at the screen. The user’s distance to the screen and
camera resolution also influence the number of image pixels avail-
able in the eye region. In our dataset, the right eye, used for the
optical flow computation, filled an area of 243.3 px (SD=98.8 px).
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Type No. of trials Velocity

Linear 8 height-of-screen/π m/s
Linear fast 10 1.5x linear speed
Circular 7 0.8 rad/s (∼45◦/s)
Circular fast 4 1.1 rad/s
Orbits 11 1.1 rad/s
Alternating orbits 11 1.1 rad/s
Orbits fast 16 1.4 rad/s
Alternating orbits fast 16 1.4 rad/s
Rectangle 3 as for linear

Table 1: We study four types of trajectories with different
characteristics: Linear, circular, orbits, and rectangular. The
velocity for each trajectory type was set empirically after
initial testing. The number of trials is per participant.

Before each session, we calibrated the eye tracker for each par-
ticipant using the routine provided by the manufacturer. Following
priorwork on pursuits interaction [Vidal et al. 2013], a single session
consisted of several experiments with different trajectory types:

(1) Linear trajectories moved back and forth on a straight line
(tilted at a certain angle)

(2) Circular trajectories followed a circle, with all competitors
being on the same circle

(3) Orbital trajectories, which also followed a circle, but com-
petitors moved on circles with different radii

(4) Alternating orbital trajectories, where every other object
moved in the reverse direction

(5) Rectangular trajectories followed a rectangle, with all com-
petitors on the same rectangle at an equal distance apart
from each other

For each type of trajectory, we used a single size, as both similar-
ity measures we employ are invariant to scaling. However, except
for rectangular trajectories, we collected data at two different ve-
locities, which were determined in pilot experiments. The details
are given in Table 1. The screen showed a single red dot following
the specific trajectory that participants were asked to follow while
we recorded the video from the webcam and gaze data from the
Tobii eye tracker. To not distract participants while doing the study,
only the actual target was shown.

For each trajectory type, we conducted different trials in which
we varied the starting positions and the movement direction of
the dot. We created a variable number of trajectories based on the
target trajectory to simulate the presence of a certain number of
competing targets in the interface. In the simulation, for any given
number of competitors, we maximised the difference within the set
of objects, consisting of the target and the competitors. For linear
trajectories, we created a new trajectory for each competitor and
rotated it around the centre point of the plane so that the angle
between the trajectories was maximised. For circular and orbital
trajectories, we maximised the phase shift between the objects. For
example, for a circular trajectory with two competitors, there were
three objects used in the evaluation, each one with a phase shift of
120◦. Similarly, competitors for rectangular trajectories travel on
the same shape as the target, but at a distance from each other.

4.2 Baseline Methods
To evaluate the performance and robustness of our method, we
compared it to the following two baselines:

(1) Pursuits with Tobii 4C. We implemented the original Pur-
suits technique [Vidal et al. 2013] that correlates the X and Y axes
of the Tobii 4C gaze estimates and object trajectories independently.
If both correlation values are above a threshold, the target with the
maximum correlation sum is selected. The threshold was set to 0.9.

(2) EyeFlow. We implemented the original method [Hassoumi
et al. 2019] that was not designed for remote settings but head-
mounted cameras. This is a fundamental difference, yet it is the
closest to our work. To simulate this configuration, we cropped
a fixed eye patch from the original eye image. Using the six eye
landmarks, we calculated the centre, height and width of the eye
patch. The cropped image was resized to 72x120 px (similar to other
works [Zhang et al. 2015], where the eye patch size was 36x60 px).
The location of the eye crop was calculated every ten frames to
account for possible movement of the participants.

In the implementation of our method, for the gaze estimator,
the correlation threshold was set to 0.6, while the cosine similarity
threshold for optical flow was set to 0.8. The window size for all
methods was set to 30 frames (i.e. 1 s) with a stride of one. When
combining gaze estimation and optical flow, the number of neces-
sary votes was three. In all experiments that follow, we evaluated
the different methods in terms of the mean and standard deviation
of the accuracy across participants. The accuracy is calculated as
the total number of correctly detected targets divided by the total
number of trials. If no target was detected during a trial, it was
counted as a false detection negatively influencing the accuracy.

4.3 Pursuits Detection Performance
We first use all of the recorded experiments and run the different
methods for up to 15 competitors. As explained in Subsection 4.1,
this means that for each number of competitors, we simulate com-
petitor trajectories based on the displayed target trajectory and run
each of the methods on this data, i.e. each pair of specific trial and
number of competitors constitutes an independent execution of the
different methods. In all experiments, we discarded the first second
from the video recordings to account for the possible time it took
participants to follow the moving target.
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Figure 3: Pursuit detection accuracy averaged across partici-
pants. The coloured bands show the standard deviation.
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Figure 4: Mean detection accuracy per trajectory type across participants with coloured bands showing the standard deviation.

Figure 3 shows the results of this analysis for our method, Pur-
suits with Tobii 4C, and EyeFlow. The coloured bands depict the
standard deviation across participants for each method and num-
ber of competitors. For zero competitors, we measured whether
the methods were able to detect the target at all. As shown by the
figure, for all methods, the accuracy decreases as the number of
competitors increases. This is because the detection problem be-
comes more challenging with a greater number of objects to choose
from. Pursuits with Tobii 4C achieves the highest accuracy for any
number of competitors, with an accuracy of over 95% for up to three
competitors, nearly linearly declining to 60% for 15 competitors. It
also exhibits a lower standard deviation than our method, which
also shows a high accuracy of over 90% for up to three competitors,
however, then declines slightly steeper to 40% for 15 competitors.
Nevertheless, our method clearly outperforms EyeFlow, which only
achieves a very low accuracy overall. From six competitors on-
wards, our method shows a slight zig-zag trend, which is caused by
performance differences for even and odd numbers of competitors
for alternating orbital trajectories, as explained in the next section.

4.4 Influence of Trajectory Type and Speed
We further examined the influence of the type and speed of a tra-
jectory on the accuracy. We ran the same evaluations as before,
however, aggregated by trajectory type or velocity. Figure 4 shows
the accuracy of the different methods per trajectory type and the
coloured bands indicate the standard deviation across participants.
The results for circular and orbital trajectories reflect the overall
results and performance ranking among the three methods, with
perfect or close to perfect detections for Pursuits with Tobii 4C for

Target

6 competitors 7 competitors

90
°51°

Figure 5: Alternating orbital trajectories for six and seven
competitors.

few competitors. When there are more than three competitors, our
method outperforms Pursuits with Tobii 4C for linear trajectories.

Note that for alternating orbital trajectories, there are perfor-
mance differences depending on whether the number of competi-
tors is even or odd. Because we keep the phase shift consistent with
the shift for circular or non-alternating orbits, the minimum phase
shift between a competitor moving in the same direction as the tar-
get and the target itself is smaller for an even number of competitors
than for a close odd number (e.g. Figure 5). For seven competitors,
the phase shift between the target and the closest object moving in
the same direction is 90◦. For six competitors, however, this differ-
ence is only 51◦, making discrimination more challenging although
the number of competitors is smaller. Our method also outperforms
Pursuits with Tobii 4C for rectangular trajectories with up to seven
competitors; however, for both methods, the standard deviation is
very high. As in the overall evaluation, EyeFlow achieves a poor
accuracy below 20% independent of trajectory type.

For each type of trajectory, we recorded two different experi-
ments, displaying the target at two different velocities, except for
the rectangular case, which we, therefore, excluded in this specific
comparison. The results depending on the velocity settings are
illustrated in Figure 6. While the average performance for all three
methods is similar, the standard deviation is smaller for Pursuits
with Tobii 4C and Ours at higher velocity.

4.5 Ablation Study
Our method detects pursuits by jointly analysing the gaze direc-
tion and optical flow in the eye region. In this experiment, we
evaluated the performance of each of the two independently and
how much each component contributed to the joint result. Figure 7
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Figure 6: Pursuit detection accuracy at normal and higher
velocity. We excluded the rectangular one from this evalua-
tion since we only collected data for a single speed setting.
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shows the results of the same procedure as in Subsection 4.3 for
our combined method and for single components, Gaze Estimation
and Optical Flow. For the single components, we employ the same
voting strategy as for the combined method. When the number of
competitors is low, the results for Gaze Estimation alone are similar
to Ours. With a larger number of competitors, the performance of
the Gaze Estimation component declines to the level of the Optical
Flow results. In such cases, Ours, the combined method, maintains a
positive performance difference of about 8 to 10 percentage points.

To investigate the contribution of each component to the overall
results, we removed the voting scheme in the last processing step
and simply returned the first merged detection that is not None.
This detection is then counted towards the contribution of the com-
ponent that provided it, or as a common contribution if both agreed.
Figure 8 shows these contributions. We separated the contributions
into correct, below the accuracy curve, and incorrect, above. The
correct contributions naturally sum up to the accuracy of the com-
bined method. Note that since we removed the voting strategy to
obtain the clear origin of the detection, the results are different from
those in Subsection 4.3. The results show that, overall, especially for
a small number of competitors, Gaze Estimation has the strongest
influence for both correct and incorrect detections, while for larger
numbers, the contributions are balanced.

4.6 Response Time
Performance in terms of accuracy only highlights one aspect of a
method’s capabilities. For interactive systems, another important
characteristic is the response time that can be defined as the amount
of time needed until a pursuit is detected. In our evaluations, we
used a window size of 30 frames, which amounts to one second
for the camera we used. As such, the lower bound for the response
time is 1 s, which is the time needed to fill the first window.

We calculated the response time for each trial and then average
across all trials. When the number of competitors is between 0 and
7, the average response time was 1.44 s (SD=0.01 s) for Tobii, 1.45 s
(SD=0.06 s) for Gaze Estimation, 1.94 s (SD=0.07 s) for Ours, and
2.34 s (SD=0.08 s) for Optical Flow. For 8 to 15 competitors, the mean
response time was 1.43 s (SD=0.01 s) for Tobii, 1.36 s (SD=0.01 s) for
Gaze Estimation, 2.27 s (SD=0.11 s) for Ours, and 2.22 s (SD=0.01 s)
for Optical Flow. We did not analyse the response time for EyeFlow
since this method has a very low overall accuracy when used in
remote settings, which makes it practically unusable.

4.7 Runtime Analysis
We evaluated the runtime of our pipeline on a desktop PC equipped
with an Intel i7-4790K CPU@ 4.00GHz and an Nvidia GeForce 1080
ti GPU. Face detection and landmark localisation use state-of-the-
art neural networks [Deng et al. 2018; Zhang et al. 2016], which
require a GPU. Face detection takes about 70ms for an image of
1280x720 px (like the ones used in our evaluations). Reducing the
resolution to 640x360 px decreases the face detection runtime to
about 20ms per image, but we did not investigate the effect of lower
resolution images on performance. Landmark localisation including
face image normalisation takes around 570ms for a window of 30
images (∼19 ms per frame). The gaze estimation CNN needs around
50ms for a batch of 30 images (∼1.7ms per frame). Optical flow
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Figure 7: Ablation study comparing the pursuit detection
performance of Ours to the individual components of our
method, Gaze Estimation and Optical Flow.

estimation takes around 45ms, motion compensation around 38ms
and, because of the compute-rate=5, they are calculated six times in
a window of 30 frames. The two components of our method can
run in parallel, gaze estimation on the GPU and optical flow on the
CPU. In our current implementation, the runtime is bounded by
the gaze estimation pipeline, which takes around 93ms per image.

5 DISCUSSION
In this work, we proposed to combine appearance-based gaze esti-
mation and optical flow in the eye region to jointly detect pursuits
without the need for any special-purpose eye tracking equipment.
Our method only requires a single RGB camera, which is included
in an ever-increasing number of devices [Khamis et al. 2018a].

Evaluations on a novel real-world dataset showed that ourmethod
could robustly detect the correct pursuit target with over 90% accu-
racy for up to four moving UI elements, independent of trajectory
type (Figure 3). It not only outperforms the current state of the
art EyeFlow [Hassoumi et al. 2019] but is also competitive to a
commercial, consumer-grade eye tracker. EyeFlow shows a low
overall accuracy, and this could be, in part, because of the optical
flow calculation: EyeFlow was proposed for head-mounted settings
where the camera has a close-up, high-resolution view of the eye.
In remote settings, users are at a distance, and only a few pixels
are available in the eye region to calculate the flow (in our case,
around 240 px per eye). Therefore, optical flow calculations across
two consecutive frames will lead to increased noise and incorrect
estimates of eye movement direction. By calculating the dense opti-
cal flow every five frames, our method is able to better approximate
the eye motion since the change between two images will be more
significant. For a large number of moving UI elements, all methods
suffer from a drop in performance, including the one that uses a
dedicated eye tracker. Other research-grade eye trackers such as
the Tobii Pro Spectrum may achieve better performance. However,
they are not only expensive but also not targeted towards end users.

In all our evaluations, to ensure reliable pursuit samples, we
only showed participants a single target that they had to follow
(similar to [Vidal et al. 2013]) and generated all the competitors
post hoc. In a real application, multiple moving elements might be
present at the same time, potentially distracting users. However,
in a multi-target environment, neuroscience literature suggests
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Figure 8: Ablation study quantifying the contribution of
each component, i.e. Gaze Estimation, Optical Flow, or Com-
mon, towards the final decision. The bars below the accuracy
curve, which is without the voting strategy, indicate correct
contributions. The ones above show incorrect contributions,
including a segment when nothing was detected.

that the brain suppresses other non-tracked targets [Leigh and Zee
2015] and the perception of competitors is reduced during smooth
pursuit [Khurana and Kowler 1987]. Moreover, a field study in a real
environment has shown that users can reliably select the desired
target in spite of multiple visible competitors [Vidal et al. 2013].

An in-depth analysis showed that there are also differences be-
tween the methods when looking at different trajectory types. As
expected, when the number of moving targets is low, the Pursuits
with Tobii 4C method performs best, yet ours follows closely. More
interesting is that for linear trajectories, when the number of targets
increases, our method shows increased robustness and even out-
performs Pursuits with Tobii 4C (Figure 4). This could be explained
by the use of the cosine similarity in the optical flow component. It
appears that our method also outperforms the dedicated eye tracker
for rectangular trajectories. However, given the little number of tri-
als per participant, it is difficult to draw general conclusions. In our
analysis, we also evaluated the influence of the target velocity on all
the methods’ performance (Figure 6). The overall average accuracy
is similar, yet the standard deviation is smaller, which implies that
faster targets lead to more stable results across participants.

To further understand how and which of the two components
contribute to the final results, we did an ablation study (Figure 7
and Figure 8). Of the two components, Gaze estimation has a higher
overall accuracy than Optical Flow. However, when the number
of targets is five or more, the methods perform quite similarly.
Nevertheless, Figure 7 clearly shows that by combining both of
them, the accuracy can improve by as much as 10 percentage points.

We also compared the different methods in terms of response
time that is of particular practical relevance in interactive systems.
Pursuits with Tobii 4C is, as expected, the fastest of all the methods
with around 1.4 s. Our method is between Gaze Estimation and Opti-
cal Flow with a response time between 1.9 and 2.2 s. This represents
a trade-off between accuracy and response time. Only using gaze
estimates will lead to a faster, but not as accurate decision.

Based on the findings from our evaluations, given the high ac-
curacy for up to four moving UI elements, our method could be

applied in several practical applications. For example, similar to Or-
bits [Esteves et al. 2015], a music player could have pursuit-enabled
controls. On a public display, a few moving targets could show
tourists interesting facts about a city. Another, less obvious applica-
tion could be eye tracker calibration. Similarly to how pursuits can
be used to calibrate an eye tracker [Pfeuffer et al. 2013], our method
could be used to collect implicit calibration samples for personalised
appearance-based gaze estimation [Zhang et al. 2018a].

While our work is the first to propose a method to detect pursuits
in unconstrained remote settings with a single RGB camera, it also
has several limitations that we will address in future work. First,
the application design space is limited by the number of targets that
can be detected reliably. As such, our method is robust for up to four
targets of the same kind. It would be interesting to investigate not
only combinations of different trajectory types but finding optimal
combinations that would maximise the overall performance for a
given number of targets. Besides predefined trajectories, we can
imagine users creating personalised trajectories, e.g. by drawing
them by hand on a smartphone or tablet, thereby designing their
own interfaces. Second, the performance may be influenced by
users’ blinking. Our recordings naturally also contain such events
and, while we did not investigate the effect of blinks, our results
implicitly include them. Blinks may lead to incorrect gaze estimates
or optical flow vectors, which, if filtered out, may increase perfor-
mance. Catch-up saccades, which correct the eye’s position relative
to the target, are another factor to consider when designing interac-
tions with pursuits. This is a consequence of targets moving too fast
(e.g. 120◦/s), which then leads to a drop in performance [Esteves
et al. 2015]. Third, the fact that the participants knew they were
taking part in a study might have altered their behaviour, e.g. in
terms of head movement. A follow-up study could examine perfor-
mance in a real-world deployment, such as playing a game on a
public display [Vidal et al. 2013]. Lastly, we also intend to optimise
the runtime in order to obtain a real-time system. Face detection,
which dominates the runtime, could be replaced with a fast object
tracker such as KCF [Henriques et al. 2015].

6 CONCLUSION
In this work, we proposed a novel method to detect pursuits by
combining appearance-based gaze estimation and optical flow to
jointly analyse the eye movement dynamics. Our method only
requires images captured with a single off-the-shelf camera placed
at a distance from the user. Through in-depth evaluations on the
data collected from a 13-participant user study, our method shows a
significant performance increase in comparison to the current state
of the art. Moreover, for up to four moving UI elements, our method
achieves an average accuracy of over 90%, which is competitive
with the performance of a dedicated eye tracker. Taken together,
these results are significant because they, for the first time, point
towards a new class of methods that enable pursuit interactions
with nothing more than a standard off-the-shelf RGB camera.
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