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ABSTRACT
Gaze estimation error can severely hamper usability and perfor-
mance of mobile gaze-based interfaces given that the error varies
constantly for different interaction positions. In this work, we ex-
plore error-aware gaze-based interfaces that estimate and adapt
to gaze estimation error on-the-fly. We implement a sample error-
aware user interface for gaze-based selection and different error
compensation methods: a naïve approach that increases component
size directly proportional to the absolute error, a recent model by
Feit et al. that is based on the two-dimensional error distribution,
and a novel predictive model that shifts gaze by a directional error
estimate. We evaluate these models in a 12-participant user study
and show that our predictive model significantly outperforms the
others in terms of selection rate, particularly for small gaze targets.
These results underline both the feasibility and potential of next
generation error-aware gaze-based user interfaces.
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Figure 1: Study participant interacting with the proposed
error-aware gaze-based interface using amobile eye tracker.

1 INTRODUCTION
Head-mounted eye trackers are promising for mobile interaction
as they provide information about the user’s intentions. Human
gaze conveys the user’s interest [Shell et al. 2003] which is already
used for interaction with one or multiple displays [Lander et al.
2015a; Stellmach et al. 2011; Turner et al. 2014]. A key problem
of mobile gaze-based interaction is that the gaze estimation error,
i.e., the difference between the estimated and true on-screen gaze
position, can be substantial, in particular if the user moves in front
of a display [Cerrolaza et al. 2012; Lander et al. 2015a; Mardanbegi
and Hansen 2012]. Besides user position and orientation, also fac-
tors specific to the eye tracker and display, e.g., parameters of the
calibration routine and of the display detection algorithm, can have
significant impact on the gaze estimation error [Barz et al. 2016].

Some interaction techniques omit the need for accurate point
of gaze (POG) estimates, e.g., by correlating raw eye movements
with animated on-screen targets [Esteves et al. 2015; Vidal et al.
2013], but introduce the need for dynamic user interfaces. Other
methods aim to address this problem by filtering gaze jitter [Špakov
2012], snapping gaze to on-screen objects [Špakov and Gizatdinova
2014] or by optimising interface layouts for gaze estimation error
at the design stage [Feit et al. 2017]. Although such methods can
improve user experience, they only alleviate the symptoms and do
not embrace the inevitable gaze estimation error in the interaction
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design. We first aimed for that goal in [Barz et al. 2016]: we pro-
posed a model to predict gaze estimation error for any 3D surface
– specified by visual markers attached to it – in the field of view
of the eye tracker’s scene camera in real time. The model covers
key error sources relevant for mobile gaze interaction, namely map-
ping of pupil positions to scene camera coordinates, marker-based
display detection, and mapping from scene camera to on-screen
gaze coordinates. However, the authors only described the model
and neither implemented it in a real user interface nor evaluated
its usefulness for mobile gaze interaction.

In this work we aim to fill this gap by presenting the first gaze-
based user interface that is “aware” of the ever-changing gaze es-
timation error and that can adapt to the error on the fly. First, we
implement a compensation method that scales targets proportional
to real-time error estimates and evaluate it in a 12 participant user
study. Considered estimators from our prior work include two sim-
ple models based on a fixed angular error, a predictive model and
a baseline using a fixed target size. The best selection rates are
achieved with the predictive model, on the cost of large target sizes:
it is not clear to which extent the advantage in selection rate origi-
nates from the target size. Hence, we describe two more advanced
error compensation methods and investigate their effect on selec-
tion rates and target sizes using our study corpus. The results of
our analysis suggest that the selection rate can be improved using
directional error estimates without increasing the average size of
targets. However, this advantage vanishes with increasing target
sizes. A great improvement can be achieved by training person-
alized directional error models: with this approach high selection
rates can be achieved even with low target sizes. All in all, our ar-
chitecture and error models enable a new class of gaze interaction
that incorporates the gaze estimation error and is suitable for many
fields of application in mobile and ubiquitous computing.

The specific contributions of our work are two-fold: First, we
propose and prototypically implement the first error-aware gaze
interface that scales selection targets depending on the current error
estimate [Barz et al. 2016]. We evaluate different error models with
this interface in a mobile interaction user study with 12 participants.
Second, informed by the findings of the first study, we propose two
advanced adaptation techniques: a method based on [Feit et al.
2017] that scales gaze selection targets according to the 2D error
distribution in the data, and a novel method that combines scaling
targets and shifting gaze by directional error estimates.

2 RELATEDWORK
Our work is related to previous works on (1) mobile eye tracking,
especially the detection of ambient displays, (2) studies on the gaze
estimation error, and (3) gaze-based interaction.

2.1 Mobile Eye Tracking
Mobile eye trackers usually feature an eye camera recording a close-
up video of the user’s eye and a scene camera capturing a part of
the user’s field of view. Gaze is reported in terms of scene camera
coordinates and accordingly needs to be mapped to the coordinate
system used for interaction [Barz et al. 2016]. A key challenge for
mobile gaze-based interfaces is that the tracker’s pose relative to
that coordinate system needs to be tracked. [Bardins et al. 2008]

attach infrared LEDs to the tracker and use a stereo camera on the
screen to track its 3D pose. Several works propose to attach visual
markers to the displays to reconstruct the tracker pose [Breuninger
et al. 2011; Hales et al. 2011; Yu and Eizenman 2004]. [Mardanbegi
and Hansen 2011] directly detect displays in the eye tracker’s scene
camera for gaze mapping. [Lander et al. 2015a] propose GazePro-
jector, an approach for mobile gaze-based interaction with ambient
displays. They seamlessly integrate multiple displays based on natu-
ral feature tracking to estimate the user’s pose. [Kassner et al. 2014]
present Pupil, an open source eye tracker that includes marker-
based surface tracking, but they do not evaluate the tracking nor
gaze-based interaction with the display. In this work, we rely on
marker tracking similar to [Kassner et al. 2014], to map gaze from
scene camera coordinates to display coordinates.

2.2 Gaze Estimation Error
The importance of the gaze estimation error has long been acknowl-
edged, although, previous works mainly focus on error sources or
post-hoc error compensation. Sources raising an error in gaze esti-
mation are manifold and comprise, e.g., physiological differences
such as the influence of pupil size [Drewes et al. 2012], experimen-
tal factors such as recording time, gaze direction as well as the
experimenter’s experience [Nyström et al. 2013] and errors that
occur due to deformations or slipping of the head-mounted eye
tracker [John et al. 2012].

Several methods are proposed that concentrate on compensating
the gaze error post-hoc. Some recent works focus on measuring and
compensating for a wider range of gaze estimation errors. Zhang et
al. propose a correction method that can reliably reduce disparity
error [Zhang and Hornof 2011] and a technique for post-hoc gaze
estimation error correction for a stationary eye tracker [Zhang and
Hornof 2014]. [Cerrolaza et al. 2012] show that particularly head
movements perpendicular to the screen cause errors in gaze estima-
tion. They propose a new calibration procedure and gaze estimation
function to incorporate the eye-to-screen distance and compensate
for the error. [Blignaut and Wium 2013] compare different models
and show that the arrangement and number of calibration targets
have a significant effect on gaze mapping accuracy. In another work,
they investigate disparity and propose post-calibration regression
to improve the accuracy of gaze recordings [Blignaut et al. 2014].
[Barz et al. 2016] present a novel approach to model and predict
the gaze estimation error for mobile eye trackers. [Feit et al. 2017]
share their vision of error-aware interfaces and investigate the gaze
estimation error for remote tracking devices, but restricted to a
constant interaction distance. They model the error as the mean
gaze offset and its standard deviation (SD) for different positions
on a display. They show that the SD can be used to optimize the
parameters of different signal filters and the mean offset to inform
gaze-based interface design. We include the findings from [Barz
et al. 2016] and [Feit et al. 2017] for prototyping a gaze-based inter-
face that is aware of the error inherent in mobile eye trackers and
evaluating its effectiveness in improving the users’ selection rates.

2.3 Gaze-Based Interaction
A fundamental issue when using gaze for direct input is the Midas
touch problem: human gaze is always active and it has to be decided
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when to use the signal and when not to use it. [Jacob 1991] suggests
using a dwell time or a key press to trigger an action at the current
gaze location. More recently, [Stellmach and Dachselt 2012] propose
a set of interactions using a mobile touch device to confirm gaze
input. We decided to use a wireless presenter to trigger a selection,
because it’s lightweight and easy to integrate.

An alternative to overcome the Midas problem is to use gaze
as context information: eye tracking passively informs interaction.
[Toyama et al. 2012] propose a system for gaze-guided object recog-
nition to detect exhibits in a museum in proximity to the user’s gaze.
Extensions of this work add face and text detection [Sonntag 2015;
Toyama and Sonntag 2015] and increase the number of predictable
classes using deep learning [Barz and Sonntag 2016]. [Lander et al.
2015b] use gaze to automatically scroll text on public displays in a
multi-user setting. [Barz et al. 2017] use gaze in combination with
speech to infer the location of referenced objects.

Several interaction techniques were proposed that address the
problem of error inherent to eye tracking. A large body of work
focused on dealing with gaze jitter, e.g., by filtering or snapping gaze
to on-screen objects using gaze-to-objectmapping algorithms [Špakov
2011, 2012; Špakov and Gizatdinova 2014]. [Miniotas et al. 2004]
showed that target expansion was able to effectively compensate
for gaze jitter in gaze-based target selection. [Monden et al. 2005]
proposed a multi-modal target selection method combining gaze
and mouse to compensate for jitter and similar errors. [Zhang et al.
2008] investigated means to stabilise the eye cursor and compen-
sate for gaze jitter. They showed that their methods outperformed
standard dwell-time based eye pointing.

One alternative to head pose tracking is to use interaction tech-
niques that do not require accurate POG estimates and are there-
fore calibration-free. [Shell et al. 2003] introduced EyePliances,
devices in the environment that were equipped with eye contact
sensors to passively detect and react on the user’s visual attention.
Gaze gestures – sequences of consecutive relative eye movements
– were introduced as a calibration-free but active interaction tech-
nique [Bulling et al. 2008]. [Zhang et al. 2013, 2014] presented
SideWays and GazeHorizon, systems for calibration-free gaze in-
teraction with ambient displays. Their approach used an off-the-
shelf webcam attached to the display for face and eye detection.
In a recent work, [Vidal et al. 2013] proposed smooth pursuit eye
movements, i.e., the eye movements we perform when following
a moving object, for gaze interaction with ambient displays. They
matched users’ eyemovement to object movements on the screen by
performing a light-weight correlation computation. Their approach
represents one of the few that is both calibration-free and allows for
high-fidelity interaction, but it requires a dynamic interface. The
pursuits approach was also applied to mobile gaze-based interac-
tion with smart watches [Esteves et al. 2015]. All these approaches
have in common that they typically do not provide high-fidelity
interactions due to the lack of accurate on-screen gaze positions.

3 DESIGN
In this work, we propose an approach for gaze-based interaction
that – in contrast to existing methods – incorporates the gaze
estimation error of the eye tracker in real-time. An overview of
our architecture is depicted in Figure 2. The Gaze Estimation and
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Gaze Estimation and Input Data Acquisition Error-Aware Interface Manager

Input Data
Acquisition

Calibration &
Gaze Estimation

GUI Controller

User with
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Interface & Marker
Visualisation

Gaze Estimation
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Figure 2: Architecture of the error-aware interface.

Input Data Acquisition component connects a mobile head-mounted
eye tracker to receive gaze information with respect to any pre-
defined display and further inputs required for predicting the gaze
estimation error. In most cases, this part will integrate with the
software package that accompanies the eye tracking hardware.
All parameters are sent to the Error-Aware Interface Manager that
adjusts the interface by compensating the gaze estimation error
based on a real-time estimate of an interchangeable Error-Model
Component and presents it to the user. In the following we describe
the individual components of our architecture and their interplay.

3.1 Gaze Estimation and Input Data
Acquisition

This component has three major tasks. First, it connects an eye
tracking device to handle calibration and to receive gaze data. Sec-
ond – if not fulfilled by the eye tracker’s API – it is responsible of
detecting displays and mapping gaze on these displays. Third, the
component acquires all necessary input parameters for the Error-
Model Component. The marker visualisation as well as executing
the error estimation is part of the Error-Aware Interface Manager.

3.2 Error-Aware Interface Manager
The interface manager is the core component of our framework and
accomplishes several tasks. First, it handles the interface elements
comprising their properties and events, similar to any user interface
framework. Any module, e.g., containing the application logic, can
add elements, influence its position and register for events. Sec-
ond, it handles the presentation of markers that are used by the
Gaze Estimation and Input Data Acquisition to identify the display
and compute the eye tracker pose. Third, and most importantly,
this component interfaces the Error-Model Component to gather
essential data for, e.g., adjusting the size of interface elements and
shifting the input signal. In this work, we implement and evaluate
different compensation methods which are summarised in Figure 3.

3.3 Error-Model Component
The error-model component encapsulates all calculations and algo-
rithms for predicting the gaze estimation error via a shared interface.
It is important that the computation time for the error inference is
suitable for real-time applications: it should be on a par with the
sampling rate of the gaze estimation (e.g., between 30 and 200Hz
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for mobile devices1). The concrete implementation should be in-
terchangeable for testing different approaches or updating models
to newer revisions for, e.g., personalizing models. We investigate
different error models that serve as input for error-compensation
methods in the Error-Aware Interface Manager.

4 COMPENSATION BY NAÏVE SCALING
For evaluating our error-aware interaction technique with theNaïve
target scaling approach, we conduct a user study with 12 partici-
pants. The size of the selection target is computed as two times the
gaze estimation error µ, because the error estimates are absolute:
they do not contain directional information (see Figure 3a). Four
error models from [Barz et al. 2016] are considered for estimating
the gaze estimation error and thus for scaling selection targets. This
includes the pre-trained machine learning model Predictive, which
takes into account several inputs related to gaze estimation and
display detection, e.g., the positions of the pupil and the selection
target and the distance and angle of the user’s head to the on-screen
selection target. Further, we re-implement two simple models Best
and Measured that calculate the gaze estimation error based on the
distance d of the user’s head to the current on-screen target and
a constant angular error ec . This error is either 0.6◦ as stated by
the hardware manufacturer (best-case) or 1.23◦ as measured for
the actual setting. The function to approximate the gaze estimation
error µ with the distance d and the error ec ∈ {0.6◦, 1.23◦} as in-
put is µ = d · tan(ec ). The baseline model None reports a constant
error, which is computed once with 1.23◦ and a static distance of
dcal = 175 cm as input (centre of the interaction space).

4.1 User Study
The proposed error-aware interface is evaluated for mobile gaze
interaction in a public display setting. The interaction with the
interface consists of a gaze-based selection task on a large display.
Hereby, the Error-Aware Interface Manager uses estimates of the
Error-Model Component for scaling selection targets in real-time:
The larger the predicted gaze estimation error, the larger the targets
(see Figure 3a). We invited 12 participants (six female) aged between
20 and 53 (M = 28.68, SD = 10.84).

4.1.1 Conditions. We investigate the performance of our Naïve
target scaling approach using different error models for the Error-
Model Component. The error models introduced above correspond
to our four conditions (Best, None, Measured and Predictive).

4.1.2 Tasks. For each condition, a calibration is performed at
the centre of a 3 × 3 grid with 50 × 50 cm cells starting 100 cm in
front of the display (approximately 175cm and orthogonal to the
screen). Then, the selections are performed using six on-screen
targets (radially arranged with one at the display centre) from all
positions of the 3 × 3 grid, totalling 216 selections per participant.
Stimuli are shown at the same positions in randomized order.

4.1.3 Design. In the user study, we consider four methods for
predicting the gaze estimation error to inform our error-aware
interface that is based on scaling (within-subject design). The order
of conditions is counterbalanced between participants.
1based on the device specifications of Pupil-Labs eye tracking equipment: https://
pupil-labs.com/pupil/

4.1.4 Procedure. First, participants are introduced to the exper-
iment and asked to complete a general questionnaire. Afterwards
each participant calibrates the eye tracker for every condition and
performs all selections for the currently considered error prediction
method (counterbalanced order). We instruct the participants to be
as accurate as possible. The grid position is shown to the user prior
to each selection. On average one run lasted 967s .

4.1.5 Apparatus. For the user study, we develop a sample error-
aware interface based on our architecture as shown in Figure 2. We
use a PUPIL Pro tracker [Kassner et al. 2014] connected to a laptop
inside a backpack worn by the participants (see Figure 1). The Gaze
Estimation and Input Data Acquisition component is based on its
attendant open source software for calibration and gaze estimation.
We extend their tool by a marker-based display detection compo-
nent to map gaze from the scene camera coordinate system to the
coordinate system of any display or interactive surface in the envi-
ronment. Besides, we collect all data needed for the components
of our interface prototype, especially for the Error-Model Compo-
nent. The prototype of the Error-Aware Interface Manager for our
study supports a single button and the handling of a corresponding
trigger event. Blue rectangles with a white dot at their centre are
shown as stimuli on a back-projected screen (1024 × 768px with
8.88px/cm). To select a target, participants are asked to press a
button on a wireless presenter while fixating on it. This additional
modality solves the Midas problem inherent to gaze-based inter-
faces. When a button click has been performed by the user, we
check if there was a recent fixation within the area of a button
and raise its trigger event accordingly. It flashes green upon a suc-
cessful selection and red, otherwise. The edge size of the button
is scaled based on a real-time error estimate from the Error-Model
Component as depicted above. It is possible to change the active
model on-the-fly, also during runtime. To prevent jumpy changes
of an element’s shape, we smooth the edge size by means of the
1-Euro-Filter [Casiez et al. 2012] with β = 0.01 and fcmin = 0.3 as
parameters. The 3×3 grid is marked on the floor with adhesive tape
to coarsely position the participants without restricting mobility.
In addition we record the 3D head pose of the user by means of
marker tracking to get more fine-grained location data (continuous
values for distance and angle).

4.1.6 Independent and Dependent Variables. Independent vari-
ables include the error prediction method, the user position and
the on-screen target. The models correspond to the conditions as
outlined above, the user position is enforced by the 3× 3 grid. Addi-
tionally, we record the 3D pose to get the distance between user and
target as well as the angle of the user to the display. The dependent
variable is the selection rate and the size of the target area.

4.1.7 Hypotheses. We hypothesize that the Naïve compensation
approach achieves best selection results with the Predictive model
with respect to the selection rate (H1). This method will especially
outperform the other approaches for varying distances (H2) and
orientations (H3) of the participants in front of the display with
reasonable target sizes (H4).

https://pupil-labs.com/pupil/
https://pupil-labs.com/pupil/
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4.2 Results
Averaged over all on-screen targets and grid positions the selection
rate is 22.47% (SD = 15.56) for Best, 48.92% (SD = 29.09) for None,
53.4% (SD = 22.53) for Measured and 81.48% (SD = 17.99) for Pre-
dictive (see Figure 4). A repeated measures ANOVA (N = 12) shows
that the differences are significant (F (3, 9) = 56.294,p < 0.001).
All pairwise differences (bonferroni-corrected) are significant, be-
sides the ones between Measured and None. In addition, all but 1
participant judged Predictive as their favourite method.

We further analyse the effect of distance and angle of the user’s
head to the on-screen target. We cluster the data into three groups
for both variables, based on the respective histogram (visually in-
spected). The resulting intervals are [80, 150] cm (near), [150, 215] cm
(mid) and [215, 290] cm (far) for the distances and [−50,−12.5]◦
(left), [−12.5, 12.5]◦ (centre) and [12.5, 50]◦ (right) for the angles to
the selection target. For Measured, we observe a significant drop in
selection rate when moving from the calibration position towards
the display (from mid to near) of 43.18% (F (2, 10) = 14.127,p =
0.001). Results for Best also decrease by 34.92%, but not significantly
(F (2, 10) = 1.448,p = 0.28). For None, we find an inverse effect, i.e.,
the selection rate increases by 30.39% (F (2, 10) = 9.988,p = 0.004).

The results for the Predictive model reveal a similar effect as for
Measured and Best, but the selection rate only decreases by 20.64%
(F (2, 10) = 17.298,p = 0.001). We find no significant differences in
selection rate considering the intervals for the angles.

Concerning the size of generated targets, we compute the angular
error ec = 1.98◦ for Predictive that would generate, on average, the
same target sizes when using the error estimation function of Best
andMeasured. The inverse of this function is used with the distance
and error estimation result of each selection as input. Further, we
average the selection rate and the target area over all participants
whichmaintains the variance for different user positions and targets
for each error model (see Figure 5). Hereby, the performance of
the Predictive model is measured with reduced and increased edge
lengths to see whether it systematically over- or underestimates
the gaze estimation error using {0.8, 0.9, 1.1, 1.2} as factors for
scaling the edge length. Concerning the Predictive method, the
selection rate improves with a regressive slope whereas the target
area grows quadratically. The mean target size for the Predictive
model is 168.15cm2 (SD = 84.67) which is larger than 76.15cm2

(SD = 41.2) for Measured, 60.38cm2 with zero variance for None
and 17.09cm2 (SD = 9.27) for Best.

4.3 Analysis
The evaluation confirms that our compensation method Naïve per-
forms best with the Predictive model, significantly outperforming
the two simple models and the baseline method for gaze error es-
timation (supports H1). On average, Best performs significantly
worse and Measured performs as well as None which uses no error
compensation. However, the performance for far user positions
significantly increases for Measured whereas it decreases for None,
same holds for Predictive andNone. This inverse behaviour confirms
H2. We could not find a dependency between selection rate and the
angle between user and display and thus could find no evidence
for H3. Our evaluation shows that using an error of 0.6◦ (Best) as
reported by the manufacturer is inapplicable for mobile settings.
Measured assumes a more realistic error, which yields better selec-
tion rates. The model based approach Predictive outperforms all
others in terms of the selection rate, but would assume the highest
error of 1.98◦, if it was a distance dependent method.
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Figure 5: Mean selection rate and mean target area for error
estimation models averaged over all participants. The error
bars indicate the SD (±) of n = 54 selections per model.

The distribution of its target areas (M = 168.15cm2) as shown
in Figure 5 is broader compared to Measured and Best indicating
a higher degree of adaptation; accordingly, the variance of None
is zero. Systematically increasing and decreasing the estimated
target size shows how the selection performance can be traded off
against the target size and that Predictive seems to be a reasonable
compromise. However, we cannot confirm H4, because it is unclear
which portion of the improvement stems from choosing the target
sufficiently large and to what extent from the adaptive behaviour
of the Predictive model. Another reason might be the high variance
in performance of different participants which cannot be explained
by these models, i.e., the Predictive model might predominantly
explain the system error of the eye tracking device.

Eventually, using the Naïve scaling approach results in unde-
sirable selection rates or relatively high target sizes which might
be up to the compensation method or the error models. For this
reason, we develop a more sophisticated method that incorporates
directional error information, hence, enables not only naïve scal-
ing of interface controls, but also shifting gaze towards the user’s
actual point of regard. Further, we investigate user-specific error
modelling for covering personal differences in tracking quality and
interaction style. We evaluate our new compensation method and
compare it to a recent approach by [Feit et al. 2017] in a post-hoc
analysis with our recorded data which is described next.

5 ADVANCED COMPENSATION METHODS
Based on our findings from the user study, we develop two addi-
tional compensation methods: a recent model based on [Feit et al.
2017] that considers the 2D distribution of the gaze estimation error
and the novel model PredictiveShift that shifts gaze by a directional
error estimate. Both methods implement the compensation part of
the Error-Aware Interface Manager and the Error-Model Component.

[Feit et al. 2017] introduce an approach for modelling the eye
tracking error using a 2D Gaussian. For each on-screen position,
they compute the spatial accuracy as mean offset µ and the spatial

precision as SD σ of the respective gaze samples for x and y. µ and
σ which define a 2D Gaussian are used for approximating the gaze
error distribution. The target size for a on-screen position (width an
height) is computed as Sw/h = 2·(µw/h+2·σw/h ). Using the doubled
SD to either side includes 95% of all samples assuming a normal
distribution of the data. By definition, this approach achieves a
selection rate of around 95% under the assumption that the error
distribution does not differ much during interaction. However, this
approach was not meant nor used for real-time error estimation in
adaptive user interaction and it is limited to a static setting: only
on-screen targets can vary. We extend their approach for mobile
settings: we consider different positions in front of the display using
a look-up table with pre-computed means and standard deviations
for all combinations of grid and screen positions. Further, we add
the factor ω to control the influence of the precision estimate σ
which allows to investigate the effect of changing target sizes. Our
adapted Feit et al. version computes the target size as Sw/h (ω) =
2 · (µw/h +ω ·σw/h ) depending on the grid position where the user
is standing and the location of the on-screen target (see Figure 3b).

Our novel approach PredictiveShift is based on modelling the
directional information of the gaze estimation error which enables
to shift the estimated gaze point to the actual point of regard, thus
reducing the systematic error of the eye tracking setup and per-
sonal characteristics in focusing gaze targets. The error model is
a multivariate ElasticNet regression model implemented in scikit-
learn [Pedregosa et al. 2011] using a preceding standard scaler for
standardising input features by removing the mean and scaling
them to unit variance. We use the following predictor variables
from our user study for estimating µ and σ (for x and y): coordi-
nates of the on-screen target, distance to the fixated display region,
horizontal angle to the display and estimated gaze position in world
camera coordinates. The distance, angle and on-screen position are
similar to the input of the distribution-based approach by [Feit et al.
2017]. We add the gaze estimates in world coordinates to cover po-
tential systematic weaknesses of the tracking device, e.g., in regions
close to the border of the camera’s field of view. In contrast to all
other methods, the spatial accuracy is modelled including its direc-
tional information which allows to shift the measured gaze towards
the actual point of regard (see Figure 3c). Similar to the model above,
we consider a weight factor ω for scaling the estimated spatial pre-
cision. The target size is computed as Sw/h (ω) = 2 · (sc +ω · σw/h )
with 2 · sc = dcal · tan (1.23◦) being the target size as computed for
the baseline method None for the Naïve approach. We use this static
base size as a lower bound, because we observed a significant plus
in selection rates for near user positions. The participant’s gaze is
corrected as follows: shift(дx/y , µw/h ) := дx/y + µw/h .

We hypothesize that compensation with PredictiveShift achieves
higher selection rates than Naïve and Feit et al. (H1.1), particu-
larly enhancing the ratio of target size and selection rate (H4.1);
personalised error models yield a further improvement (H4.2).

5.1 Model Training and Evaluation
For training and evaluating the compensation methods, we use the
recorded interaction sessions from our user study. First, we pre-
process the data extracting all relevant information and excluding
outliers. The subsequent steps are based on this cleaned dataset.
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Table 1: Mean selection rate and target size from the offline
simulation of compensation methods from the user study.

Best None Measured Predictive
Selection Rate [%] 21.37 54.19 52.99 83.76
Target Size [cm2] 16.33 55.24 68.62 170.36

5.1.1 Pre-Processing. The recorded dataset includes raw and
meta data of all selection trials from our study. We extract the
relevant parts of each selection sequence by cropping the signals
starting half a second before the selection was triggered (presenter
click) and stopping at that event. Outliers are removed based on the
mean gaze offset to the actual target centre and on the distribution of
the standard deviations of the gaze signal for the cropped intervals.
We drop a selection trial if the mean offset is greater than 5 degrees
[Kassner et al. 2014] and if the standard deviation is greater than the
95th percentile of all standard deviations. High offsets commonly
appear, whenmarker tracking fails or when the eye tracking headset
is displaced. High variance values can occur, when the user’s pupil
cannot be tracked well. In total, we drop 8.80% of the data totalling
in 2364 selections from 12 users. On average, the dataset contains
197 selection trials for each user (SD = 13.93).

5.1.2 Model Training. The error estimation of the applied com-
pensation methods are data driven, hence, require a training phase
which is described here. In general, we split the data into a train
(75%) and a test-set (25%). Concerning the user-specific models
for PredictiveShift(personal), we split the data per user with the
same ratio. For Feit et al., we compute the means µ and standard
deviations σ on the train-set as described above, and store them
in a look-up table. For our new predictive model, we conduct a
5 × 5 nested crossvalidation (k-fold) on the train-set where the
inner loop performs a grid search for optimising model parameters
of the ElasticNet algorithm. The search space includes the degree
of polynomial features ∈ {1, 2}, the factor alpha∈ {10, 1, .1, .001}
weighting the penalty terms and the l1_ratio ∈ {0, .5, 1}.

5.1.3 Evaluation Procedure. We use the selection trials from the
test-set for validating all compensation methods including Naïve
with all error models, Feit et al., PredictiveShift and its personalised
version. For each selection and compensation method, we infer
the gaze error using the recorded signals as input. This estimate is
used for computing the target size and, in case of PredictiveShift,
for shifting the POG (see Figure 3). The selection success and the
respective target size is logged. We repeat the evaluation cycle with
20 values of ω weighting the influence of the precision estimate on
the target size. The interval range and step-size is chosen, starting
with ω = 0 (no influence), such that selection rates of models
converge to 100%. For all methods, this results in a maximum target
size between 300 and 350cm2 (see Figure 6). We consider ω ∈ {0 ≤
i < 3} with step-size 0.15 for Feit et al. and ω ∈ {0 ≤ i < 20} with
step-size 1 for PredictiveShift and PredictiveShift(personal).

5.2 Results
We average the selection rate and the target area over all on-screen
targets and grid positions. Figure 6 visualises the mean selection
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Figure 6: Mean selection rate off all methods in relation to
the average target sizes. For the new compensationmethods,
we include the results for varying ω.

rates in relation to their mean target size for each method. This al-
lows a direct comparison with our previous results: the four squares
represent the offline simulation results of the Naïve scaling using
different error models, confirming our previous findings (see Table 1
and Figure 4). The results of the other compensation methods are
plotted as curves, due to the variable parameter ω. Tests for statis-
tical significance are conducted using McNemar’s test for selection
rate and the Wilcoxon signed-rank test for target sizes.

For ω = 0, the compensation method of Feit et al. [Feit et al.
2017] achieves a selection rate of 40% with an average target size
of 37.74cm2. When increasing ω by two steps to 0.3, it achieves
a similar selection rate and target size than the baseline method
Naïve[None]: 52.65% at 55.27cm2. The selection rate further im-
proves with greater values for ω, but the ratio to the target area
decreases (i.e., the slope of the curve is regressive). Hereby, this
method reaches a similar selection rate than Naïve[Predictive] at
ω = 1.2 with 83.59%, but with significantly smaller target sizes
of, on average, 128cm2 (Z = −14.6,p < .001). In the same way, it
outperforms Naïve[Predictive] with a similar target size (175.7cm2)
in terms of selection rate: 90.6% at ω = 1.65 (p < .001).

With ω = 0, PredictiveShift generates targets of the same size
than the baseline Naïve[None], which is used for computing its base
size sc (see Figure 3c). However, shifting the gaze by the predicted
directional gaze error increases the selection rate by 11.45% to
65.64% (p < .001). Similar to the Feit et al.method, with increasingω,
our novel method achieves higher selection rates with a regressive
slope. Particularly for small targets, our method PredictiveShift
achieves higher selection rates. PredictiveShift(personal) achieves
the best selection rates and target sizes. For ω = 0, the selection
rate is 90.98%: it significantly improves by 25.34% compared to the
non-personalised version and is 36.79% better than the baseline
Naïve[None] (p < .001). In addition, it exceeds the selection rate
of Naïve[Predictive], despite significantly smaller target sizes by
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67.57% (Z = −20.45,p < .001). Similar to the other approaches,
the selection rate increases as ω grows with a regressive slope.
For ω = 10, the personalised compensation method achieves a
selection rate of 98.01% with target sizes around 165.82cm2 that are
comparable to Naïve[Predictive] (p < .001).

6 DISCUSSION
In this work, we show that the performance of mobile gaze inter-
action can be significantly improved, if the interface is aware of
and can adapt to the inevitable gaze estimation error. The error
compensation method PredictiveShift consequently achieves better
selection rates than our initial Naïve scaling approach and excels
the method based on [Feit et al. 2017] (supports H1.1). The results
of our evaluation show that, given a certain selection rate, all new
compensation approaches generate smaller targets (supports H4.1).
Especially, the user-specific training with our shift-based compen-
sation method, PredictiveShift(personal), increases the performance
measures tremendously without increasing the target size (supports
H4.1 andH4.2).We conclude that personalisedmodels better explain
the variation between user, e.g., covering differences in tracking
quality and in how they interact using gaze. The decreasing slope
can be explained by the fact that the error might be normally dis-
tributed. Increasing the selection rate beyond a certain point comes
at the cost of larger selection targets that grow quadratically in area.
To put our results into context, we approximately measured the
area of common controls of the Windows 10 user interface for the
display setting as shown in Figure 1 with a size of 115.32×86.49 cm:
Selecting taskbar icons (19cm2) and small tiles in the start menu
(32cm2) would still be difficult; mid-sized tiles (170cm2) and larger
controls would achieve high selection rates. Next, we discuss use
cases, advantages and short-comings of our approach.

6.1 Advantages and Use Cases
The key advantage of our error-aware interface is its application
to enhance mobile gaze-based interfaces. The evaluation shows
benefits when using sophisticated compensation methods with er-
ror models in selection performance and generated target sizes. To
the best of our knowledge, this is the first attempt to apply such a
model in real-time interaction. A direct application of our methods
is the extension of the interaction framework by debugging com-
ponents that visualise the gaze error just-in-time, and a simulation
component that allows early assessment of gaze-based user inter-
face prototypes. We suggest two data visualisation techniques and
describe the simulation capability with our error models similar to
[Feit et al. 2017], but extending it to mobile settings with varying
user positions. Both visualisation methods are implemented and
informally tested with regard to real-time interface analysis.

6.1.1 Uncertainty Indicator. Hereby, the gaze pointer is aug-
mented by a transparent ellipse indicating the estimated distri-
bution of the gaze error. Therefore, the two-dimensional spatial
accuracy and spatial precision estimate of any of the presented
error models is used to span an ellipse around the fixation position.

6.1.2 HeatmapOverlay. For this approach, a regular grid (N×M)
is laid over the display space and mapped back to the world camera
space (with an inverse display mapping). The error of the tracking

device is estimated for each position. A texture with the resolution
N ×M is generated where each pixel corresponds to one point of
the grid. For each point, the colours are assigned based on the error
value. Finally this texture is mapped to the display region on the
world camera stream which enables an immediate feedback for a
considered interface from the user’s egocentric perspective.

6.1.3 Gaze-interface Design Tool. Simulations have significant
potential for interaction designers for optimising interfaces, inter-
action techniques and visualisations, without the need to test each
variant through actual human studies. Our framework enables an
assessment at the design stage similar to Feit et al. [Feit et al. 2017].
Each interactive control can be compared to target sizes generated
by our compensation methods for identifying potential issues. Us-
ing our method, different user positions in a mobile interaction
setting with given display positions and sizes can be covered.

6.2 Limitations
Despite its novelty in terms of error-awareness, our gaze-based in-
terface has some limitations. Currently, we restrict the number and
type of interface elements to a single button that can be triggered.
To showcase an error-aware gaze-based interface, this button ex-
pands in size for high-error situations and optionally shifts gaze to
ease selection. Currently, there is no efficient method for collecting
required training data, but the best ratio of selection rate and target
size is achieved with our personalised compensation approach.

7 CONCLUSION
We introduced an error-aware gaze interaction framework. This
framework enables a new class of gaze-based interfaces that are
aware of the gaze estimation error. Driven by real-time error estima-
tion this approach has the potential to outperform state-of-the-art
gaze selection methods in terms of selection performance with
competing target sizes. We presented a first implementation of the
framework and evaluated a naïve target scaling approach with four
methods to estimate the gaze error in a user study. Elaborating on
our findings, we developed and compared advanced error compen-
sation methods. The results show both the real-time capability as
well as the advantages of an error-aware interface, relying on gaze
shifting and personalised training with a predictive model, in terms
of selection performance and target sizes.

We plan to further extend and evaluate the concept of error-
aware gaze-based interaction in future work. As a first step we
want to add and compare further mechanics to adapt the inter-
face according to the gaze estimation error. One idea would be to
move small objects to low error regions. This could, for example,
help to automatically locate fine- and coarse-grained gaze-based
interaction on near and far displays, respectively. Further, it will be
interesting to explore techniques for seamless collection of training
samples for training new error models or fine-tuning them for new
users, e.g., as part of a calibration routine or fully automatic.
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