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Abstract. We propose MToMnet – a Theory of Mind (ToM) neu-
ral network for predicting beliefs and their dynamics during human
social interactions from multimodal input. ToM is key for effec-
tive nonverbal human communication and collaboration, yet exist-
ing methods for belief modelling have not included explicit ToM
modelling or have typically been limited to one or two modalities.
MToMnet encodes contextual cues (scene videos and object loca-
tions) and integrates them with person-specific cues (human gaze and
body language) in a separate MindNet for each person. Inspired by
prior research on social cognition and computational ToM, we pro-
pose three different MToMnet variants: two involving the fusion of
latent representations and one involving the re-ranking of classifica-
tion scores. We evaluate our approach on two challenging real-world
datasets, one focusing on belief prediction while the other examin-
ing belief dynamics prediction. Our results demonstrate that MToM-
net surpasses existing methods by a large margin while at the same
time requiring a significantly smaller number of parameters. Taken
together, our method opens up a highly promising direction for fu-
ture work on artificial intelligent systems that can robustly predict
human beliefs from their non-verbal behaviour and, as such, more
effectively collaborate with humans.

1 Introduction

Social interaction and collaboration are essential human skills [15].
To engage in them effectively, humans have developed the ability to
predict mental states and beliefs of others by observing their non-
verbal behavioural cues, such as gaze or body language – so-called
Theory of Mind [33, ToM]. Humans are adept at integrating multi-
ple modalities for this task, including contextual information. Given
its importance in human-human interactions, computational ToM has
recently emerged as a new frontier in developing intelligent compu-
tational agents that can understand and collaborate with humans [19].
Despite a surge of papers on this new task, deep learning methods for
predicting other agents’ mental states have mainly been studied in
constrained artificial environments [3, 35, 31, 16, 37, 36, 29, 30, 9].
Moreover, existing methods typically rely on only one or a few
modalities to predict beliefs, such as visual or linguistic cues [27, 39].
Effectively integrating a wider range of modalities for belief pre-
diction remains an open research challenge. Moreover, existing ap-
proaches for belief prediction in real-world settings have not explic-
itly added a ToM mechanism.

In this work, we focus on predicting human beliefs from multi-
modal inputs and how these beliefs change dynamically in real-world
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scenarios involving naturalistic dyadic (human-human) interactions.
Belief prediction is particularly challenging, and ToM is particularly
important when verbal communication is impossible. In these situa-
tions, individuals must instead rely on nonverbal cues to convey their
intentions and beliefs. Advancing from recent work [14, 13], we pro-
pose a multimodal ToM neural network (MToMnet) that leverages
person-specific nonverbal communication cues (gaze, pose) and con-
textual cues (video frames, object bounding boxes) to predict beliefs
and how they change over time.

MToMnet encodes contextual cues using shared feature extrac-
tors and person-specific cues using two independent MindNets –
LSTM-based sub-networks that allow our model to encode indi-
vidual traits. Without a clear theoretical framework for integrating
ToM into neural networks, we draw inspiration from computational
ToM and social cognition research and study three different vari-
ants of MToMnet that add explicit ToM modelling. The Decision-
Based MToMnet (DB-MToMnet) adopts a decision-based strategy
inspired by recent advancements in referential games [27]. Here, be-
lief prediction for one individual is used to re-rank the predictions for
the other. The other two approaches employ a model-based strategy,
leveraging MindNets’ latent representations. The Implicit Commu-
nication MToMnet (IC-MToMnet) enables the communication be-
tween MindNets via late fusion of internal representations. The Com-
mon Ground MToMnet (CG-MToMnet) is inspired by research in
social cognition, in particular by the idea that human communica-
tion involves a shared, inter-subjective common ground [40]. We
use MToMnet latent representations to create such common ground
based on this insight.

We evaluate these MToMnet variants on two challenging multi-
modal real-world datasets that target complementary objectives. The
Benchmark for Human Belief Prediction in Object-context Scenar-
ios [13, BOSS] consists of videos of two people tasked to collabo-
rate only using nonverbal communication. BOSS facilitates the eval-
uation of models’ belief prediction capabilities, i.e., the ability to
correctly predict the belief of both people for each video frame. In
contrast, the Triadic Belief Dynamics dataset [14, TBD] focuses on
communication events that emerge during in-the-wild social interac-
tions between two people. TBD enables the evaluation of models’
ability to predict changes in the belief dynamics of a person causally
constructed by these events.

We report extensive experiments on both datasets, demonstrating
that our approach significantly outperforms state-of-the-art methods
while only using a fraction of the parameters. Our results empha-
sise the importance of explicit Theory of Mind (ToM) modelling
for achieving these performance improvements. Moreover, analyses
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of MToMnet’s latent representations underline the effectiveness of
encoding person-specific cues with independent MindNets. Further
post-hoc analyses on TBD show that MToMnet can predict false be-
liefs dynamics – beliefs that do not align with reality – more accu-
rately than previous approaches.

Overall, this work makes four contributions:

• We introduce a multimodal ToM neural network (MToMnet) that
combines nonverbal communication cues and visual inputs for be-
lief and belief dynamics prediction.

• We propose three approaches to computationally modelling The-
ory of Mind, inspired by recent work on computational ToM
and social cognition: decision-based, implicit communication, and
common ground.

• We demonstrate that explicit ToM modelling allows us to achieve
substantial performance gains for two tasks – belief prediction
and belief dynamics prediction – at a significantly lower compu-
tational cost.

• We report analyses highlighting the effectiveness of modelling
person-specific beliefs using independent MindNets and the ef-
ficacy of explicit ToM modelling for capturing false beliefs.

2 Related Work

2.1 Belief Prediction

Predicting beliefs is a challenging task, even in constrained artifi-
cial settings, such as grid-world environments [35, 16, 36, 29, 30, 9],
3D worlds consisting of basic geometric shapes [37] or virtual real-
ity environments [34]. First, datasets that take a step towards men-
tal state modelling in real-world settings have been proposed. These
datasets consist of videos of human social interactions that have been
annotated with rich social cues, such as gaze or body pose. The
Benchmark for Human Belief Prediction in Object-context Scenarios
(BOSS) focuses on belief prediction in dyadic collaborative interac-
tions, i.e. the task of predicting beliefs of two people collaborating
with each other [13]. Similarly, the Triadic Belief Dynamics dataset
(abbreviated TBD here) focuses on the prediction of belief dynam-
ics, i.e. predicting if and how someone’s belief changes during social
nonverbal interactions [14]. As such, both datasets complement each
other in terms of the tasks they evaluate and the scenarios they cover,
namely in-the-wild everyday activities (TBD) and collaborative sce-
narios (BOSS). In this work, we use both datasets to evaluate our
method and show that employing a triadic structure and explicitly
modelling ToM achieves better performance than existing methods
for predicting both beliefs and belief dynamics.

2.2 Machine Theory of Mind

Theory of Mind (ToM) has been studied in cognitive science and
psychology for decades, but our understanding of how humans de-
velop this essential ability is still severely limited. Mirroring ef-
forts to understand ToM in humans, an increasing number of works
in the computational sciences have investigated means to equip
artificial intelligent (AI) systems with similar capabilities. Previ-
ously proposed models that aim to implement a machine ToM
have been based on partially observable Markov decision processes
(POMDP) [12, 20], Bayesian methods [2, 26, 14, 28] and deep learn-
ing methods [35, 4, 43, 13, 27, 9, 6, 7]. Specifically for predicting be-
liefs of agents that engage in nonverbal communication, Duan et al.
[13] and Fan et al. [14] follow different approaches. Duan et al. [13]

have used deep learning methods based on a ResNet [21] feature ex-
tractor for video frames and linear feature extractors for gaze, pose,
bounding boxes and object-context relations. In contrast, Fan et al.
[14] has used a triadic hierarchical energy-based model to track be-
liefs dynamics and compared it to neural network baselines that use
only RGB frames, histogram of oriented gradients [11, HOG] or
handcrafted features. Current deep learning approaches either han-
dle input modalities shallowly or restrict themselves to a limited set
of modalities. Energy-based models rely on more upfront engineer-
ing work involving the use of handcrafted features. Moreover, none
of these approaches models ToM explicitly in their formulation. In
this work, we show how explicitly modelling ToM in the neural net-
work architecture can lead to substantial improvements compared to
previous approaches.

3 Method

Our multimodal Theory of Mind neural network (MToMnet) com-
bines nonverbal human communication cues (gaze and pose) with
contextual cues (e.g. RGB video frames and object bounding boxes)
to predict the beliefs of two observed human agents. In stark contrast
to previous approaches [14, 13], our method leverages shared feature
extractors and two MindNets that individually model each person’s
beliefs (see Figure 1). This design choice is motivated by research in
social cognition suggesting that triadic (human-human-context) joint
attentional engagement is necessary for effective cooperation [40].
This triadic engagement is reflected by our choice of two MindNets
that encode nonverbal cues of each human and shared feature extrac-
tors that encode contextual cues available to both humans.

3.1 Base MToMnet

Our base MToMnet consists of two separate MindNets and a set
of shared feature extractors. Each MindNet encodes individual cues
from one person (e.g. human gaze and body language), combines
them with contextual features (e.g. scene videos and object locations)
coming from the shared features extractors, and adds temporal infor-
mation. Let xC ∈ C be a set of contextual cues and xI ∈ I a set
of individual cues for a specific person in the scene. Contextual cues
are encoded by shared features extractors and concatenated

xctx =
∥
∥
C∈CSharedFeatExtrC(xC) (1)

where ‖ denotes concatenation. Similarly, individual cues for a par-
ticular person are encoded and concatenated:

xind =
∥
∥
I∈IMindNetFeatExtrI(xI) (2)

Individual and contextual features are subsequently concatenated and
used as input to a normalisation layer [1, LN], followed by a bidirec-
tional LSTM [18] to model temporal information. The final LSTM
hidden state is passed on to one or more fully connected (FC) classi-
fication heads that yield a probability distribution over classes:

P (yi|x) ∝ exp(FC(LSTM(LN(x)))) (3)

where {yi}Yi=0 are dataset-specific classes and x = xctx ‖
xind. The final belief predictions are obtained using the argmax of
P (yi|x):

b̃ = argmax
i

P (yi|x) (4)

In the following, we refer to the inputs, latent representations, and
outputs of the two person-specific MindNets with the indices {1, 2}.
We investigate three different variants of explicitly adding Theory of
Mind to this base model architecture.
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Figure 1: Our multimodal Theory of Mind neural network MToMnet consists of two separate MindNets – one for each person – to encode
individual cues (e.g. human gaze and body language) and integrate them with contextual cues (e.g. scene videos and object locations). We
propose three different MToMnet variants: Decision-Based MToMnet (DB-MToMnet) combines class probabilities of the two MindNets
to re-rank predictions. Implicit Communication MToMnet (IC-MToMnet) adds a communication mechanism between the two MindNets that
exchange their internal LSTM cell state. Common Ground MToMnet (CG-MToMnet) forms a common ground representation by concatenating
the two MindNets’ cell states. We also study different aggregation operations: ⊗ = element-wise multiplication, ⊕ = element-wise sum, ‖ =
concatenation, and � = cross-attention.

3.2 MToMnet Variants

We study three different variants of MToMnet that draw inspiration
from prior research on computational ToM and social cognition to
add explicit ToM modelling: Decision-Based (DB-MToMnet), Im-
plicit Communication (IC-MToMnet), and Common Ground (CG-
MToMnet). Our goal is to explore whether an internal ToM mecha-
nism can, similar to humans, also benefit computational agents. We
study different operations to combine neural representations for each
variant of MToMnet and identify the best for our tasks.

Decision-Based Theory of Mind (DB-MToMnet). Inspired by
previous work on referential games, where a speaker agent uses
an internal listener model to re-rank potential utterances [27], DB-
MToMnet incorporates a ToM mechanism to re-rank class label pre-
dictions. More specifically, we combine P (yi|x1) and P (yi|x2)
within the MToMnet using a “ToM weight” hyper-parameter τ , and
we take the argmax of this score as the final belief prediction:

b̃1 = argmax(P (yi|x1)
τ · P (yi|x2)) (5)

b̃2 = argmax(P (yi|x2)
τ · P (yi|x1)) (6)

In contrast to Liu et al. [27], we apply the weight τ to the origi-
nal probability distribution, e.g. to P (yi|x1) for MindNet1, and not
to the other probability distribution. As such, the hyper-parameter τ
controls the extent to which the prediction from one MindNet im-
pacts that of the other: the larger τ , the smaller the impact.

Implicit Communication Theory of Mind (IC-MToMnet). Con-
ceptually similar to DB-MToMnet, IC-MToMnet enables communi-
cation between the two MindNets via internal representations instead
of exchanging ranking scores. Specifically, given the LSTM outputs

h1, c1 = LSTM1(x1) h2, c2 = LSTM2(x2) (7)

where h and c indicate the LSTM hidden state and cell state, we
aggregate one MindNet’s hidden state with the other MindNet’s cell

state, and vice versa. As we use bidirectional LSTMs, we use a fully
connected layer to project the hidden state to the cell state dimension:

z1 = FC(h1) � c2 z2 = FC(h2) � c1 (8)

where � can be one of the following aggregation operations: addition,
multiplication, concatenation, or cross-attention [42]. z1 and z2 are
used to obtain the predictions in the final classification layers.

Common Ground Theory of Mind (CG-MToMnet). This fi-
nal variant is inspired by the idea that the human communica-
tive context is not limited to the surrounding environment but in-
volves a wider, shared and inter-subjective context known as com-
mon ground [10, 40]. Tomasello [40] refers to “common ground” as
shared experience between individuals that is critical for all human
communication. As such, common ground represents a broad con-
cept that may include perception, attention, and knowledge. In this
work, we build such common ground by combining the LSTM cell
state c of each MindNet. We chose the LSTM cell state as it repre-
sents the memory of the network, storing information over time. In
practice, we concatenate the cell state of the two LSTMs to form a
common ground representation:

cg = FC(c1 ‖ c2) (9)

The cg tensor is then aggregated with the LSTM hidden states to
obtain z1 and z2:

z1 = FC(h1) � cg z2 = FC(h2) � cg (10)

where � has the same meaning as before. z1 and z2 are used to obtain
the predictions in the final classification layers.

4 Experiments

4.1 Datasets

BOSS. The Benchmark for Human Belief Prediction in Object-
context Scenarios (BOSS) is a real-world dataset consisting of videos
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Figure 2: Examples from BOSS [13] and TBD [14]. BOSS includes
third-person video frames, bounding boxes (top left), 3D gaze (top
centre) and body pose (top right). TBD includes third-person (bottom
left) and first-person (bottom centre) video frames, 2D gaze (bottom
centre, pink dot) and body pose (bottom right).

of two humans performing collaborative tasks without verbal com-
munication [13]. The dataset consists of 900 third-person videos
recorded with 10 participants in 15 different object-context situa-
tions. In each video, each person stands in front of a table, one with
contextual objects and the other with objects that can be selected
based on the context (see Figure 2, top). The person standing in front
of the contextual objects table receives a contextual task and must
non-verbally communicate which object on the other table should
be selected. In Figure 2 (top), the task is “Circle the words on the
magazine’s cover”, for which the correct object to be selected by the
participant on the right is the marker.

The computational task is to predict each person’s beliefs for each
video frame correctly. This translates into a classification problem
where the possible classes {ci}Ni=0 are the different objects, with
N = 27. The dataset is annotated with gaze estimation, pose esti-
mation, bounding boxes, ground truth beliefs, and an object-context
relations matrix (OCR) that describes which objects are more likely
to appear given a certain context. For instance, a hammer is more
likely to be present when there are nails rather than when there is a
pizza. Given that we noticed that the original bounding box anno-
tations were highly inaccurate during preliminary experiments, we
opted for re-extracting them using YOLOv5 [23]. 1

Triadic Belief Dynamics Dataset (TBD). Fan et al. [14] have
collected a dataset covering nonverbal communication in rich so-
cial interactions. Participants were not provided a detailed script but
only with the type of nonverbal communication they could use. The
dataset consists of 88 videos recorded with 12 people in seven dif-
ferent scenarios. It includes first- and third-person video frames and
gaze, pose, and bounding box annotations (see Figure 2, bottom). We
opted for also evaluating on TBD because it differs from and com-
plements BOSS in two distinct ways. First, people were asked to per-
form three types of nonverbal communication – no communication,
attention following, and joint attention – that, while highly relevant
for belief prediction, do not directly involve collaboration. Second,
TBD differs from BOSS in that the task is not to predict a person’s
belief about objects in the scene itself but its dynamics, i.e. if and
how this belief changes over time. Concretely, given video clips of
five frames, a model has to classify the belief dynamics for a selected
object in the scene into four classes: occur, disappear, update, and
null. Importantly, TBD involves predicting belief dynamics not only
for first-order (m1,m2) but also second-order beliefs (m12,m21) –
i.e. beliefs over another person’s beliefs – and a common mind (mc)
that corresponds to a common ground between the two participants.

1 Link to code and improved annotations in the Appendix [8].

4.2 Implementation Details

MToMnet. BOSS and TBD share most input modalities, with a
few exceptions. For BOSS, the contextual cues consist of third-
person RGB videos, object bounding boxes, and the OCR matrix.
Individual cues are derived from 3D gaze and pose. TBD contains
third-person RGB videos and object bounding boxes as contextual
cues and first-person RGB videos, pose, and 2D gaze as individual
cues. Given these differences, we implemented dataset-specific fea-
ture extractors. All MToMnet variants encoded RGB video frames
using a three-layer CNN with 16, 32, and 64 filters, respectively.
Each convolutional layer was followed by ReLU activation and max
pooling. The OCR matrix and poses were processed by a graph con-
volutional network [25]. The OCR matrix naturally represents an ad-
jacency matrix for our graphs, and we used its normalised values as
node features. For the poses, we defined the adjacency matrix based
on connections of body joints and used the 3D joint coordinates as
node features. Object bounding boxes are fed into a fully connected
layer. Each MindNet uses a one-layer bidirectional LSTM, preceded
by layer normalisation. All layers in our MToMnet models have hid-
den dimension 64 and are followed by GELU activation [22] and
dropout [38] with p = 0.1. For DB-MToMnet we set the “ToM
weight” to τ = 2. For BOSS, each MindNet outputs a belief pre-
diction. For TBD, classification layers for m1 and m12 take z1 as
input, whereas classification layers for m2 and m21 take z2 as input.
Since mc represents the “common mind” between both agents [14],
z1 and z2 are first aggregated by performing element-wise multipli-
cation and then fed into the classification layer. Additional details on
the architecture are provided in [8].

Training. We trained all models for 300 epochs using three distinct
random seeds. Cross-entropy was employed as the loss function, and
model checkpoints were saved based on the highest validation ac-
curacy for BOSS and the highest macro F1 score for TBD. These
metrics were chosen for easier comparison with the original works
[13, 14]. We used the Adam optimiser [24] with a learning rate of
5 · 10−4. Additional details are provided in [8].

Baselines. We compare our approach with the original mod-
els [14, 13]. For BOSS, Duan et al. [13] have proposed four mod-
els based on a ResNet34 backbone for encoding video frames and
fully connected layers for other modalities like gaze, pose, bounding
boxes, and OCR. The models are CNN, CNN+GRU, CNN+LSTM,
and CNN+Conv1D, each incorporating different types of recurrent
or convolutional layers before passing the concatenated latent repre-
sentations to two classification layers. To ensure a fair comparison,
we re-trained these models for 300 epochs, as the original models
were only trained for five epochs.

Fan et al. [14] have evaluated similar approaches on TBD. Their
first model (CNN) uses a ResNet50 to extract frame features, fol-
lowed by fully connected layers for belief dynamics classification.
The CNN+HOG-LSTM model incorporates histograms of oriented
gradient [11, HOG] features of the frame patch gazed at by the partic-
ipants along with full frame features. The CNN+HOG+Mem model
concatenates the history of predicted belief dynamics with frame
and HOG features, while the Feats+Memory model combines hand-
crafted features with the history of predicted belief dynamics using a
multi-layer perceptron. Fan et al. [14] achieved state-of-the-art per-
formance on TBD by using a hierarchical graphical model (denoted
here as HGM) trained using a beam-search algorithm on handcrafted
events derived from raw pixels.
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Figure 3: Accuracy for belief prediction on BOSS for our MToMnet models and baselines [13] using all input modalities. Scores significantly
different from CG‖-MToMnet according to a paired t-test (p < 0.05) are marked with a *.

Table 1: Macro F1 scores for previous approaches [14] and MToMnet variants on TBD. Scores significantly different from CG‖-MToMnet
according to a paired t-test (p < 0.05) are marked with a *.

Model m1 m2 m12 m21 mc Average

Chance 0.103 0.104 0.102 0.101 0.100 0.102
CNN 0.171 0.167 0.169 0.174 0.250 0.186

CNN+HOG-LSTM 0.167 0.132 0.205 0.182 0.250 0.187
CNN+HOG+Mem 0.285 0.285 0.246 0.250 0.155 0.244

Feats+Mem 0.274 0.288 0.230 0.227 0.191 0.242
HGM 0.431 0.443 0.351 0.349 0.299 0.375

-MToMnet

Base 0.276± 0.055* 0.473± 0.085* 0.313± 0.014* 0.473± 0.010 0.566± 0.095* 0.420± 0.023
DB 0.442± 0.067* 0.313± 0.051* 0.425± 0.006* 0.385± 0.013* 0.459± 0.010* 0.405± 0.013

CG‖ 0.477± 0.078 0.460± 0.065 0.452± 0.010 0.467± 0.013 0.583± 0.080 0.488± 0.022
CG⊕ 0.461± 0.059 0.472± 0.076 0.459± 0.009 0.468± 0.012* 0.544± 0.091 0.481± 0.022
CG⊗ 0.462± 0.062* 0.478± 0.068 0.451± 0.010 0.469± 0.014* 0.559± 0.103* 0.484± 0.023
CG� 0.461± 0.057 0.464± 0.062* 0.469± 0.015 0.475± 0.009 0.564± 0.099 0.486± 0.022
IC‖ 0.462± 0.067* 0.463± 0.067 0.459± 0.002 0.471± 0.014 0.556± 0.093* 0.482± 0.022
IC⊕ 0.465± 0.074* 0.474± 0.073* 0.466± 0.025* 0.473± 0.015 0.561± 0.098 0.488± 0.025
IC⊗ 0.417± 0.066* 0.423± 0.072 0.464± 0.001 0.486± 0.007 0.450± 0.007* 0.448± 0.014
IC� 0.455± 0.072* 0.257± 0.002* 0.462± 0.032* 0.274± 0.016* 0.554± 0.084* 0.401± 0.019

4.3 Model Performance

Results for the different MToMnet variants and the baselines on
BOSS are shown in Figure 3. We use the following notation to in-
dicate the different aggregation operations: ⊗ = element-wise mul-
tiplication, ⊕ = element-wise sum, ‖ = concatenation, � = self-
attention. As can be seen from the figure, already the Base-MToMnet
(i.e. without explicit ToM modelling) outperforms all baselines
(0.653 accuracy), despite requiring less than 3% of their parame-
ters (∼ 450k vs 21M). Second, incorporating explicit ToM mod-
elling (DB, CG, IC) yields further performance improvements, but
the choice of aggregation is critical. CG‖-MToMnet exhibits the
highest overall performance amongst all models (0.729), followed by
IC⊗-MToMnet (0.713), and IC‖-MToMnet (0.705). In contrast, the
DB-MToMnet (0.659) only achieves a marginal improvement over
the Base-MToMnet (0.653). Figure 3 also shows results for CG‖-
MToMnet and baselines obtained using the original bounding box
annotations. While CG‖-MToMnet still outperforms all the base-
lines, the baselines do not benefit from the improved bounding boxes.
This is likely attributed to the shallow feature aggregation in the
baseline models. The paired t-test revealed a significant difference
(p < 0.05) between CG‖-MToMnet and the other models. To fur-
ther validate our architectural choice, we evaluated a single MindNet
model. Our methods outperform this model and achieve an accuracy
of 0.61, except for CG� and IC�. We report modality ablation stud-
ies in [8].

Evaluation scores for belief dynamics prediction on TBD are
shown in Table 1, where we also report paired t-test results (p <
0.05) between CG‖-MToMnet and other MToMnet variants. As for

Figure 4: Modality ablation study for BOSS.

BOSS, our Base-MToMnet already achieves better performance than
the best baseline (HGM) – with the only exception of m1 (0.276 vs.
0.431) and m12 (0.313 vs. 0.351). Adding explicit ToM modelling
leads to further performance gains for all three variants, up to 30%
on HGM. Considering the average performance across different ag-
gregation types, the best model is again the one inspired by social
cognition, CG-MToMnet. In particular, the single best performing
models are CG‖-MToMnet and IC⊕-MToMnet, on par (0.488). Re-
markably, all our MToMnet variants achieved their highest F1 scores
on mc, except for IC⊗-MToMnet. In contrast, baselines typically
find classifying belief dynamics for mc one of the most challenging
tasks, achieving lower scores. Our CG‖-MToMnet (0.583) substan-
tially outperformed the best baseline, HGM (0.299), by a substantial
margin of improvement.

These results highlight the effectiveness of our proposed MToM-
net architecture and underline the significance of explicit ToM mod-
elling in achieving superior performance with significantly reduced
computational costs.
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Figure 5: Modality ablation study for TBD.
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Figure 6: Examples from PCA results for h1 and h2 from CG‖-
MToMnet, taken from BOSS and TBD test set.

Modality Ablation Study. Figure 4 shows the accuracy achieved
by ablated versions of our best-performing model, CG‖-MToMnet,
on the BOSS dataset. The results highlight the significant impact
of including bounding boxes as input modality (rgb+ocr+bbox and
rgb+bbox). This result aligns with previous research [13], empha-
sising the crucial role of knowing the objects present in the scene
for the task. When excluding bounding boxes, the accuracy scores
decreased. We suspected that the newly introduced bounding box
annotations might be a major contributing factor to this outcome.
Therefore, for the sake of completeness, we conducted additional ex-
periments where CG‖-MToMnet was trained and evaluated using the
original bounding box data. The results, depicted in Figure 4 (teal),
demonstrate that when utilising the original bounding boxes, the per-
formance gap with other ablated versions of the model drastically de-
creases. Nevertheless, our model performs better than the baselines
even when using original bounding box annotations.

The differences in averaged F1 scores across mi, i =
{1, 2, 12, 21} on TBD between the complete CG‖-MToMnet and its
ablated versions are reported in Figure 5. Our full model achieves
an F1 score of 0.488. Ablating modalities generally result in per-
formance degradation, with the worst-performing version experienc-
ing an 8.9% decline, attaining an F1 score of 0.449 (rgb1+rgb3).
Integrating multiple behavioural cues, such as pose and gaze, con-
tributes positively to performance. Specifically, the combination of
third-person RGB frames with gaze and pose achieved an F1 score of
0.487, outperforming models where third-person RGB frames were
combined with only gaze or pose.

4.4 Modelling Person-Specific Features

To assess the efficacy of encoding individual cues and predicting
individuals’ beliefs using independent MindNets, we compared the
feature representations from the two LSTMs, h1 and h2, by em-
ploying Principal Component Analysis [32, PCA]. As the examples
in Figure 6 show, the LSTMs hidden states h1 and h2 from CG‖-
MToMnet show a clear disentanglement of principal components
both on BOSS and TBD. We found the same behaviour for all our

Table 2: Label counts for TBD train and test set.

Mind
Train/test count

Occur Disappear Update Null

m1 (all) 156/48 0/0 2176/731 1750/582
m1 (false belief) 0/1 0/0 5/0 158/53
m2 (all) 146/46 9/0 2579/860 1348/455
m2 (false belief) 0/1 0/0 1/1 118/47
m12 (all) 75/25 16/5 916/298 3075/1033
m12 (false belief) 0/0 0/0 0/0 19/4
m21 (all) 81/27 11/1 821/260 3169/1073
m21 (false belief) 0/0 0/0 0/0 52/20

MToMnet variants and provided examples for all of them in [8]. This
finding suggests that each MindNet represents person-specific cues
and fuses them with contextual cues differently for different persons,
highlighting the value of such architectural choice.

4.5 False Belief Dynamics Prediction

TBD involves predicting belief dynamics for both first- and second-
order beliefs, i.e., self-beliefs (m1,m2) and beliefs held over an-
other person’s beliefs (m12,m21). Human beliefs, however, are not
always aligned with reality: individuals may hold a first- or second-
order false belief [44]. We show an example in Figure 7. Thinking
her partner had left the room, a participant moved an apple from the
backpack to behind her laptop. She believes her partner believes the
apple is still in the backpack. However, she is unaware that her part-
ner is actually standing by the door and saw her move the apple to
the table. This situation exemplifies a second-order (she believes he
thinks) false belief. Despite not being used in [14], the TBD dataset
includes false belief annotations, allowing us to perform post-hoc
analyses on models’ capabilities to predict such false belief dynam-
ics. That is, we do not train models specifically to recognise false be-
liefs but evaluate models’ belief dynamics predictions that, according
to the provided annotations, correspond to false beliefs.

Figure 8 summarises the accuracy for false belief dynamics predic-
tions on TBD, considering first-order, second-order, and both false
belief types. We report accuracy as we were interested in detecting
whether a model predicted correctly (positive class) or not (negative
class) a (a certain type of) false belief. For first-order false belief
and joint first- and second-order false belief dynamics prediction, all
IC- and CG-MToMnet variants outperform Base, except for IC�. In
particular, our CG-MToMnet variants achieve the highest accuracy,
improving over Base-MToMnet by a large margin on first-order false
beliefs (up to 0.78 vs. 0.49) and on joint first- and second-order false
beliefs (up to 0.80 vs. 0.57).

Figure 8 also shows that predicting second-order false belief dy-
namics – generally more difficult – is easier on TBD. To understand
why, we compared the distribution of all labels with those corre-
sponding to false beliefs, as shown in Table 2. In training and test
sets, most false belief labels for all minds mi, i = {1, 2, 12, 21}, are
null. For false beliefs associated with m12 and m21, null is the only
possible label. Thus, most false beliefs in the dataset correspond to
situations where individuals assume that nothing changed although
something did (occur, disappear, or update) – akin to the Sally-Anne
test [5]. However, when considering the overall label distribution, the
most frequent label for m1 and m2 is update, thus leading to biases
towards predicting the update class during training. This ultimately
leads to lower accuracy in predicting first-order false beliefs, where
null is the most prevalent label. However, our MToMnet variants, es-
pecially CG-MToMnet, can overcome this bias.
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Figure 7: Example of second-order false belief from TBD [14]. Thinking her partner had left the room, a participant moved an apple from the
backpack to behind her laptop. She believes her partner believes the apple is still in the backpack. However, she is unaware that her partner is
actually standing by the door and saw her move the apple to the table.

Figure 8: Accuracy of false belief prediction on TBD for different variants of our MToMnet (Base = no explicit ToM modelling, DB = decision-
based ToM, CG = common ground ToM, IC = implicit communication ToM). Scores significantly different from CG‖-MToMnet according to
a paired t-test (p < 0.05) are marked with a *.

5 Discussion

Social Cognition Is All You Need. In this work, we presented
MToMnet – a Theory of Mind neural network for predicting be-
liefs and their dynamics during nonverbal human social interactions.
Our best performing MToMnet variant (CG-MToMnet) achieved

new state-of-the-art results for belief (dynamics) prediction on both
BOSS (Figure 3) and TBD (Table 1), as well as for false belief dy-
namics prediction on TBD (Figure 8). At the same time, MToMnet

requires considerably fewer parameters than previous state-of-

the-art methods – approximately 460k vs. 21M for BOSS and 1M
for TBD (see [8]) – and, as a result, shows faster training (less than 3
hours vs. 17 to 20 hours for baselines on BOSS [13]). These findings
are important as they underline the significant potential of adopting
concepts developed in the cognitive sciences when designing com-
putational agents. This also represents a paradigm shift compared
to the recent trend of improving performance mainly through up-
scaling model complexity. Our analyses of the latent representations
showed that the two MindNets are effective in capturing individuals’
information in distinct ways for modelling beliefs (Figure 6), further
supporting the architectural design choices of MToMnet. Remark-
ably, CG-MToMnet can be easily adapted to interactions involv-

ing more than two interacting agents, thanks to its shared common
ground representation across all MindNets. This adaptability is cru-
cial for future work exploring scenarios with several human and com-
putational agents. Extending DB- and IC-MToMnet to involve more
than two agents is more challenging. For DB-MToMnet, it would
be crucial to find the right set of τ such that probabilities do not
vanish. One interesting idea for future work is to make τ learnable.
IC‖-MToMnet faces the challenge of aggregating numerous hidden
states, which could result in a quite large vector. A broader limitation
arises when dealing with dynamic environments, where the number
of individuals in a scene can vary. Together with extending models
to dynamic environments, another promising direction is to improve
the integration of different input features, a facet not explored in this
work. For example, on BOSS, the OCR matrix could be used to de-
fine an additional term in the loss function to enforce object-context
relations.

Explicit Modelling of ToM Improves Performance. A key con-
tribution of our work is the explicit modelling of ToM using multi-
modal individual and contextual cues. Our experiments demonstrated
that MToMnet not only achieves new state-of-the-art performance
on the two most common benchmark datasets but also outperforms
existing baselines by a large margin. Instrumental to these improve-
ments is the explicit ToM modelling that allowed us to improve our
Base-MToMnet by 19% on BOSS (CG‖-MToMnet, Figure 3), and
up to 60% on TBD (CG‖-MToMnet, Table 1, Average). This par-
ticularly shows for the challenging task of false belief prediction on
TBD for which explicit ToM modelling leads to significant improve-
ments of up to 60% over the Base-MToMnet model (Figure 8). This
finding is particularly significant considering the large body of work
and long-standing efforts on false belief prediction [17, 3, 35, 41].

Limitations of Current Benchmarks. Our ablation studies high-
light a fundamental limitation inherent in current benchmarks due to
the quality and consistency of the data, negatively affecting model
performance. In this work, we found inaccuracies in bounding box
annotations in the BOSS dataset and re-extracted them. This led to
a substantial enhancement in performance, highlighting the impor-
tance of precise bounding box information. Rectifying similar is-
sues in gaze data proved unfeasible, as participant faces in the BOSS
dataset were deliberately obscured for privacy reasons. Despite data
limitations, our models outperformed the baselines with both original
and revised annotations (Figure 4).

6 Conclusion

In this work, we proposed MToMnet, a Theory of Mind network that
predicts beliefs and their dynamics during human social interactions
from multimodal input. Building on social cognition and ToM re-
search, we designed three MToMnet variations: one decision-based
and two model-based. Across two real-world datasets, MToMnet out-
performed existing methods in both belief prediction and belief dy-
namics prediction, despite having fewer parameters. These results
advance the state-of-the-art in belief prediction thus facilitating bet-
ter collaboration with humans.
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