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Abstract

Despite growing interest in Theory of Mind
(ToM) tasks for evaluating language models
(LMs), little is known about how LMs inter-
nally represent mental states of self and others.
Understanding these internal mechanisms is
critical — not only to move beyond surface-level
performance, but also for model alignment and
safety, where subtle misattributions of mental
states may go undetected in generated outputs.
In this work, we present the first systematic in-
vestigation of belief representations in LMs by
probing models across different scales, training
regimens, and prompts — using control tasks to
rule out confounds. Our experiments provide
evidence that both model size and fine-tuning
substantially improve LMs’ internal represen-
tations of others’ beliefs, which are structured —
not mere by-products of spurious correlations
— yet brittle to prompt variations. Crucially, we
show that these representations can be strength-
ened: targeted edits to model activations can
correct wrong ToM inferences.

1 Introduction

Language models (LMs) trained on next token pre-
diction have demonstrated impressive capabilities
across various tasks, spanning coding, math, and
embodied interaction (Wei et al., 2022; Bubeck
et al., 2023). As these models are designed with
the ultimate goal of collaborating with humans, it
becomes imperative that they complement these
skills with an understanding of humans. Core to
this understanding is Theory of Mind (ToM) — the
ability to attribute mental states to oneself and oth-
ers (Premack and Woodruff, 1978). ToM is essen-
tial for effective communication and cooperation
with other agents, facilitating interaction and learn-
ing from feedback and demonstrations (Saha et al.,
2023). Given its significance, computational ToM
has emerged as a key capability when evaluating
cutting-edge LMs (Ma et al., 2023; Shapira et al.,
2024; Chen et al., 2025).

Correct
i answer?
elie:
Question LM x

Belief
Story Statement . LM Probe —
Belief
Question | LM A
Steering Vector

Figure 1: ToM tasks are challenging for LMs, but cor-
rect predictions can sometimes be recovered by probing
their internal representations. We study how internal rep-
resentations of beliefs of self and others emerge in 12
LMs, and show that these representations are structured
yet brittle to prompts, and can be strengthened with a
steering vector to fix incorrect ToM inferences.

Despite the improved performance on ToM
benchmarks compared to earlier models, modern
LMs are still far from perfect (Sap et al., 2022).
Text generated by LMs often contains errors that
limit their performance on ToM tasks. Zhu et al.
(2024) showed that probing LMs’ internal repre-
sentations can sometimes recover correct belief
inferences, with models like Mistral-7B-Instruct
(Jiang et al., 2023) and DeepSeek-7B-Chat (Bi
et al., 2024) capturing beliefs from both their own
and others’ perspectives. While promising, this re-
mains a preliminary step: it examines only single-
sized, fine-tuned models, leaves possible confounds
uncontrolled, and ignores how subtle changes in
prompting affect belief representations. As a result,
we still lack a clear understanding of how internal
belief representations differ across models, whether
they reflect true ToM or spurious patterns, and how
robust they are to prompts.

To address these gaps, we pose four key research
questions and present evidence for each. We begin
by studying how emergence scales across models:

RQ1 Do internal belief representations emerge
similarly in different LMs, and are they affected
by model size and training regime?

Finding training regimes or scales that are more



conducive to belief reasoning can guide future
model development toward more reliable ToM be-
haviour. However, it is also crucial to verify if rep-
resentations are structured, indicating genuine mod-
elling of mental states, or spurious:

RQ2 Are LMs’ internal belief representations
structured or the result of spurious correlations?

This distinction is essential for determining if rep-
resentations reflect a genuine understanding of be-
liefs or only exploit statistical patterns that happen
to correlate with correct answers in the training
data. This is also crucial for alignment and safety,
as misaligned mental state attributions may not ap-
pear overtly in text — leading to false signals of
understanding. Equally important is that models
can maintain robust belief attributions:

RQ3 Are LMs’ internal belief representations ro-
bust?

Fragile representations may break under slight vari-
ations, leading to inconsistent or unsafe behaviour
in real-world applications involving social reason-
ing or user interaction. Strengthening these repre-
sentations, then, offers a promising path toward
improving their reliability:

RQ4 Can we strengthen LMs’ internal belief rep-

resentations to improve their performance?

To answer these research questions, we perform
probing and activation editing experiments using
12 LMs (Figure 1). We first compare base mod-
els with those fine-tuned via SFT and/or RLHF
(Ouyang et al., 2022)(RQ1), finding that belief rep-
resentations emerge in consistent patterns across
models, improve with model size, and — especially
in smaller models — benefit significantly from fine-
tuning. To provide evidence that LMs’ belief rep-
resentations are structured (RQ2), we show that
(1) probes trained on randomly permuted labels
perform at chance — confirming selectivity, and
(2) probes trained on top-k principal components
still recover most accuracy for k < dypo4e1- Next,
we test robustness (RQ3) using varied prompts.
Surprisingly, semantically neutral changes can re-
duce accuracy, revealing that representations of
others’ beliefs are brittle to prompts. However, we
show that it is possible to strengthen models’ rep-
resentation by using contrastive activation addition
(Rimsky et al., 2023, CAA), obtaining significant
performance improvements across different ToM
tasks (RQ4).

In summary, our work makes the following con-
tributions:

1. We provide extensive probing experiments
across 12 LMs, suggesting that representations
of others’ beliefs improve with size and fine-
tuning, and that these representations are struc-
tured yet brittle to prompt variations.

2. We show that we can strengthen models’ repre-
sentations by using contrastive activation addi-
tion and improve their ToM performance.

2 Related Work

Machine Theory of Mind Theory of mind has
been studied in Al for more than a decade (Baker
et al., 2009; Rabinowitz et al., 2018; Bara et al.,
2021; Bortoletto et al., 2024a,b,c). Various bench-
marks have been proposed, aiming to measure LMs’
ability to understand and reason about the beliefs,
goals, and intentions of others (Le et al., 2019;
He et al., 2023; Kim et al., 2023; Gandhi et al.,
2023; Xu et al., 2024; Tan et al., 2024; Sclar et al.,
2023; Ma et al., 2023; Wu et al., 2023). Addi-
tionally, efforts have been made to enhance LMs’
ToM through prompting techniques (Zhou et al.,
2023b; Moghaddam and Honey, 2023; Wilf et al.,
2023). Our work dives deeper into LMs’ internal
belief representations, offering a broader insight
into these mechanisms that go beyond surface-level
performance.

Probing Neural Representations Initially pro-
posed by Alain and Bengio (2017), probing is a
widely used method for determining if models rep-
resent particular features or concepts. In the realm
of LMs, numerous works used probing to demon-
strate that these models acquire rich linguistic rep-
resentations — spanning semantic concepts such
as syntactic categories, dependency relations, co-
reference, and word meaning (Conneau et al., 2018;
Tenney et al., 2018, 2019; Rogers et al., 2021; Li
et al., 2021; Hernandez and Andreas, 2021; Marks
and Tegmark, 2023; Liu et al., 2023). A separate
line of work explored if LMs possess a world model
(Li et al., 2021; Abdou et al., 2021; Patel and
Pavlick, 2022; Li et al., 2023a; Nanda et al., 2023).
An emergent line of work that is relevant to our
work used probing to explore if LMs have agent
models, for example, if they can represent beliefs
of self and others (Zhu et al., 2024; Bortoletto et al.,
2024a). In this work, we contribute with extensive
experiments that characterise models’ representa-
tions of beliefs along different axes: emergence,
structure, robustness, and steerability.



Prompt Analysis Previous work has shown that
LMs are vulnerable to prompt alterations like token
deletion or reordering (Ishibashi et al., 2023), bi-
ased or toxic prompts (Shaikh et al., 2023) and sim-
ilarity to training data (Razeghi et al., 2022). Other
works have shown the importance of input-output
format (Min et al., 2022) and of demonstration ex-
ample ordering for few-shot performance (Zhao
etal., 2021; Lu et al., 2022; Zhou et al., 2023a). In
this work, we shift our focus from analysing how
sensitive model outputs are to how model repre-
sentations change (Gurnee and Tegmark, 2024).
In particular, we explore for the first time the ef-
fect of prompt variations on how models internally
represent mental states.

Activation Editing Activation editing has
emerged as a way to influence model behaviour
without any additional fine-tuning (Li et al., 2023a;
Hernandez et al., 2023). One notable method
in this domain is inference-time intervention
(Li et al., 2023b, ITI), which involves training
linear probes on contrastive question-answering
datasets to identify “truthful” attention heads and
then shifting their activations during inference
along the identified truthful directions. In contrast,
activation addition (Turner et al., 2023, AA) and
contrastive activation addition (Rimsky et al., 2023,
CAA) generate steering vectors by only using
LMs’ activations. Zhu et al. has used ITI to show
that it is possible to manipulate LMs’ internal
representations of mental states. In this work, we
show that using CAA can further improve LMs’
ToM capabilities while eliminating the need for a
fine-grained search over attention heads.

3 Experimental Setup
3.1 Probing

We linearly decode belief status from the perspec-
tive of different agents by using probing (Alain and
Bengio, 2017). Probing involves localising specific
concepts in a neural model by training a simple
classifier (called a probe) on model activations to
predict a target label associated with the input data.
To provide a formal definition, we adopt a similar
notation to the one introduced in (Belinkov, 2022).
Consider an original model f : x +— ¢ that is
trained on a dataset D = {z(® y(®} to map in-
put z to output . Model performance is evaluated
by some measure, denoted PERF(f, D?). A probe
g1 : fi(x) — Z maps intermediate representations
of z in f at layer [ to some property Z, which is the

label of interest. The probe g; is trained on a prob-
ing dataset D¥ = {2} and evaluated using
some performance measure PERF(g;, f, D?, DF).
In our case, f is an autoregressive language model
that, given a sequence of tokens z, outputs a prob-
ability distribution over the token vocabulary to
predict the next token in the sequence. Our probe
is a logistic regression model g; : 2 = Wa; + b
trained on neural activations f;(x) = a; to predict
binary belief labels y = {0, 1}.

3.2 Dataset

We use BigToM (Gandhi et al., 2023), a question-
answering dataset constructed by populating causal
templates and combining elements from these tem-
plates. Each causal template is set up with a context
and a description of the protagonist (e.g. “Noor is
working as a barista [. .. ]”, see Story in Figure 2),
a desire (“Noor wants to make a cappuccino’), a
percept (“Noor grabs a milk pitcher and fills it with
oat milk”), and a belief (“Noor believes that the
pitcher contains oat milk”). The state of the world
is changed by a causal event (“A coworker swaps
the oat milk in the pitcher with almond milk”). The
dataset constructs different conditions by chang-
ing the percepts of the protagonist after the causal
event, which will result in different beliefs. Simi-
lar to (Zhu et al., 2024), we focus on the Forward
Belief setting in which models have to infer the
belief of the protagonist given the percepts of the
causal event, P(belief|percepts). We report addi-
tional details in Appendix A.1.1

Probing Datasets We consider two probing
datasets: D}’ = {xz(f), ZI(,Z)}, where the labels zl(f)
correspond to ground-truth beliefs from the protag-
onist perspective, and DI’ = {q:gi), z((,i)}, where
the labels z(()i) reflect the perspective of an om-
niscient oracle. D}: and DY are built by pairing
each story in BigToM with a belief statement, as
shown in Figure 2. After prompting the model with
a story-belief pair z we cache the residual stream
activations f;(z) at the final token position for all
residual streams (see Figure 6).

3.3 Models

We study two families of LMs that offer us op-
tions in model sizes and fine-tuning: Pythia (Bi-
derman et al., 2023) and Llama-2 (Touvron et al.,
2023) — for a total of 12 models. While Llama-2
offers “chat” versions first trained with SFT and
then RLHF, Pythia’s open-source training set (Gao



Noor is working as a barista at a busy coffee
shop. Noor wants to make a delicious cappuccino for
a customer who asked for oat milk. Noor grabs a milk
pitcher and fills it with oat milk. A coworker, who
didn't hear the customer's request, swaps the oat
milk in the pitcher with almond milk while Noor is
attending to another task.

Noor does not see her coworker swapping the milk.
The milk pitcher contains almond milk.
2z, = True, z, = False

Noor sees her coworker swapping the milk.
The milk pitcher contains almond milk.
2o =True, z, =

Figure 2: Example of false belief from our probing

datasets. The labels z, and z, correspond to Df and

DY respectively. By manipulating the protagonist’s per-

cepts after the causal event, we obtain two scenarios:
and false belief.

et al., 2020) ensures that there is no data leakage'.
Additionally, we consider a SFT version of Pythia-
6.9B trained on open-source instruction datasets
(Wang et al., 2024), which we refer to as Pythia-
6.9B-chat.> We provide model details in Table 2.

3.4 Probing Experiments

To study how LMs represent beliefs of self and
others, we propose a set of extensive probing ex-
periments across LMs that differ in architecture,
size, and fine-tuning regime. We train probes on the
residual stream, as it integrates information from
both the attention and feed-forward components,
potentially encoding richer representations. Addi-
tionally, since the residual activations directly con-
tribute to the final output predictions, probing them
may better align with understanding the model’s
behaviour for downstream tasks.

Control Tasks Depending on the model dimen-
sion, the probes we train have a significant number
of learnable parameters — up to 16, 385 for Llama-
2-70B. This raises the concern that probes might
learn to rely on irrelevant patterns in the data in-
stead of capturing meaningful relationships. To ac-
count for the potential confounding effect of hidden
state size, we include two controls. First, follow-
ing Hewitt and Liang (2019), we train and eval-
uate probes on a version of D;f with randomly

"Llama-2 was released later than BigToM.
2h'ctps ://huggingface.co/allenai/
open-instruct-pythia-6.9b-tulu

permuted labels — thus removing real input-label
relationships. If a probe still performs well on the
permuted data, this suggests it may be exploiting
superficial correlations rather than capturing gen-
uine structure. Second, we effectively reduce the
number of learnable parameters in the probes by
projecting Dg and DF onto their k largest princi-
pal components using PCA before training. This
minimises the risk of the probes relying on spurious
patterns in the data.

Robustness Tests Previous work left the impact
of prompting on belief probing accuracy unex-
plored. Our second set of experiments aims to
study whether belief representations are robust to
different prompts. Research on prompt robustness
in language models focused mainly on revealing
vulnerability to prompt alterations on downstream
performance (Min et al., 2022; Ishibashi et al.,
2023; Shaikh et al., 2023; Leidinger et al., 2023;
Sclar et al., 2024). In contrast, we study how dif-
ferent prompt alterations influence probing perfor-
mance, i.e. models’ internal representations. Unlike
model outputs that are shaped by decoding strate-
gies, which act as confounders, models’ activations
are more abstract and offer a better lens into how
robust or brittle internal representations are. We
define four prompt variations:

* Random: Following Gurnee and Tegmark (2024),
we add 10 random tokens to the belief statement.

* Misleading: Each story is followed by two belief
statements, one pertinent to the story and one
randomly chosen from another.

* Time Specification: The prompt specifies that the
belief statement refers to the end of the story. We
include this variation because some belief state-
ments can be true (false) at the story’s beginning
but false (true) at the end. For example, consider
the story in Figure 2: if Noor does not witness
the swap, in the end, she will believe the pitcher
contains almond milk (z, = True). However, if
the same belief is referred to the beginning of the
story, then it is false (z, = False).

* Initial Belief: We explicitly reveal the protago-
nist’s initial belief (e.g. “Noor believes that the
pitcher contains oat milk”) in the story to test
whether it biases the representations of LMs.

While all maintain conceptual and semantic parity

with the Original prompt used in (Zhu et al., 2024),

Random and Misleading are expected to negatively

impact LMs’ representations, while Time Specifi-
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cation and Initial Belief are supposed to have a
positive influence. Robust representations of be-
liefs should exhibit minimal sensitivity to these
alterations. Our experiments compare probe accu-
racy across different model sizes, fine-tuning, and
prompt variations. Examples of prompts are re-
ported in Appendix A.1.4.

3.5 Activation Editing

Prior work found that it is possible to manipulate
models’ representations of beliefs by using (Li
et al., 2023b, ITI), and that such interventions can
improve LMs’ performance on ToM tasks. We take
this further by asking whether a general “belief vec-
tor” can be distilled and injected into the models’
activations to strengthen their ToM abilities. To this
end, we use contrastive activation addition (Rim-
sky et al., 2023, CAA), an extension of activation
addition (Turner et al., 2023, AA) that computes
steering vectors to control LMs’ behaviour. Steer-
ing vectors are computed as the average difference
in residual stream activations between pairs of pos-
itive and negative instances of a specific behaviour.
Formally, given a dataset D of triplets (p, ¢, ¢),
where p is a prompt, ¢, is a positive completion,
and ¢y, is a negative completion, CAA computes a
mean difference vector vlmd for layer [ as:

1
v{”d:@ Y alpe) —alpen) (D)

pvczhc’nED

For example, in Figure 2, p is the Story, ¢, could
be the true belief, and c,, the false belief. During
inference, these steering vectors are multiplied by
an appropriate coefficient o and added at every to-
ken position of the generated text after the prompt.
CAA has two main advantages over ITI: First, it
eliminates the need to train probes, making it com-
putationally cheap. For example, for Llama2 70B,
ITI needs to train 5,120 probes while CAA only
needs to compute 80 vectors. Second, it operates
at the residual stream level, making it easier to
use than methods that intervene on specific atten-
tion heads like ITI. While CAA has been used to
control alignment-relevant behaviour, such as hal-
lucinations, refusal, and sycophancy (Rimsky et al.,
2023), we are the first to apply it to enhance LMs’
ToM reasoning. The “belief vectors” (i.e. steering
vectors) we obtain can be understood as isolating
the direction in the LMs’ latent space correspond-
ing to taking the perspective of another agent. To
evaluate both base and fine-tuned LMs, we rank

their answers to the ToM questions according to
pra(alg) (Petroni et al., 2019). For a fair compar-
ison, we adopt the train/test Forward Belief split
used in (Zhu et al., 2024) to compute and evaluate
the steering vectors. Additionally, we evaluate the
transferability of the CAA steering vectors by ap-
plying them to two other BigToM tasks: Forward
Action and Backward Belief. We provide details
about these tasks in Appendix A.1.1, and a more
detailed explanation ITI in Appendix A.5.

4 Results

Effect of Model Size and Fine-tuning Results
from our study on model size and fine-tuning are
shown in Figure 3. For oracle beliefs, probing ac-
curacy rapidly converges to 100, with larger mod-
els showing faster convergence. Even the smallest
Pythia-70m achieves 95% accuracy. For protago-
nist beliefs, we notice a similar pattern across most
models, where accuracy at early layers is partic-
ularly low and then increases at the intermediate
layers. What happens at early layers is overfitting,
which may be caused by spurious features intro-
duced by the initial coding strategy of language
models, where individual token representations are
mixed together (Gurnee et al., 2023). We further
discuss this in Appendix A.2.1.

In general, probing accuracy increases with
model size, although there is a performance gap
between Llama-2 and Pythia. For example, Llama2-
13B reaches around 80% accuracy, while Pythia-
12B achieves approximately 60%. This gap is likely
due to Llama-2 being trained on nearly seven times
more tokens than Pythia (cf. Table 2). Probes from
fine-tuned LMs show significantly better accuracy,
with improvements of up to +29% for Llama2-7B-
chat (SFT + RLHF) and +26% for Pythia-6.9B-
chat (SFT) compared to probes from their base
version. The same probes outperform (Llama-2) or
are on par (Pythia) with probes trained on twice as
large base models (12/13B). This highlights a key
role of fine-tuning in shaping belief representations
in smaller LMs. The performance gap closes for the
largest Llama2-70B, for which the improvements
from fine-tuning are marginal.

We characterise the relationship between probe
accuracy and model size in Figure 7, using the best
accuracy for each LM — i.e., the highest accuracy
among probes g; trained on activations a; for model
f. For Llama-2 base and Pythia base, probing ac-
curacy scales logarithmically with model size (Fig-
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Figure 3: Belief probing accuracy show similar patterns across all models: oracle belief representations generally
form already in the first layers, while protagonist belief representations emerge at the intermediate layers. Moreover,
probing accuracy increases with model size and, more crucially for smaller models, with fine-tuning.
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Figure 4: We compare the probing accuracy obtained by using the original set of activations (All) with the accuracy
obtained by considering only the first £k = {2, 10, 100, 1000} principal components. Results are for protagonist
beliefs (for oracle see Figure 12). In general, it is possible to recover most of the original accuracy by training
probes on a smaller number & of principal components of the activations.

ure 7b, 7d), while for fine-tuned Llama-2 models, also performed the first control experiment, this
it scales linearly (Figure 7c¢). time only using the first & = {100, 1000} princi-
pal components. Figure 8b and 8c again show that
probes trained on the control task consistently per-
form at random chance, confirming that probes are
not fitting spurious patterns. Additionally, this sug-
gests that belief representations are embedded in a

Control Tasks Figure 8a shows that probes
trained on the control task consistently perform
at random chance, confirming that higher probing
accuracy in larger models meaningfully reflects

a greater ability to extract ToM representations, low-dimensional subspace B spanned by the top &
rather than simply being a by-product of spurious eigenvectors {vy, ..., v} of the covariance matrix
correlations. For Llama models, the probes gener- C = Ef(a E[a]’)(a ! Ela]) ]

ally exhibit selectivity: they achieve high accuracy
when probing for beliefs but remain at chance level Sensitivity to Prompting Figure 5 compares pro-
on control tasks. Pythia’s overall accuracy is too tagonist probe accuracy across various prompt vari-
low to allow for selectivity. ations for Llama-2 models. As can be seen from
Figure 4 shows probing accuracy on protagonist  the figure, providing the protagonist’s Initial Belief
when training the probes on the top k principal  ip the story yields higher probe accuracy compared
components of Llama-2’s internal activations. We (o the Original prompt. Accuracy for all the other
provide results for Pythia in Figure 11, and for  prompt variations is generally lower than Original.
all models on oracle settings in Figure 12. We  pfisieading prompts hurt performance across all
consider k = {2,10,100,1000}, spanning sev-  models. This finding resonates with Webson and
eral orders of magnitude.? Results show that itis  paylick (2022), who found that instruction-tuned
generally possible to recover most of the original  models, despite being more robust, are still sensi-
accuracy by training probes on a smaller number  tive to misleading prompts. On the other hand, Time
k of principal components of the activations. We Specification unexpectedly does not help in dis-
" 3For models with hidden dimensions smaller than 1000, ~ ambiguating belief states in different time frames,
we skip this value. as we hypothesised in §3.4. Additionally, models
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Figure 5: Sensitivity of protagonist belief probing accuracy to different prompt variations. Results for Pythia are
shown in Figure 9. Representations are brittle to prompt variations.

show sensitivity to Random tokens placed before
the belief statement. Pythia models show simi-
lar patterns, shown in Figure 9. Results for ora-
cle beliefs are reported in Figure 10 and indicate
that models maintain high accuracy. Misleading
prompts slightly reduce performance to around
95%. In summary, these experiments show that
LMs possess robust belief representations when
taking an omniscient perspective, whereas their rep-
resentations of others’ beliefs are brittle to prompt
variations.

Contrastive Activation Addition We compare
models’ accuracy on three BigToM tasks in Table 1
(Llama) and Table 3 (Pythia). Each model has been
evaluated three times: without any intervention,
using ITI, and using CAA. Hyperparameter details
can be found in Appendix A.6. Note that we use
steering vectors computed using the Forward Belief
task for all three tasks to test their generalisability.

Performance without intervention is generally
lower across tasks and model sizes, with the larger
Llama-2-70B and Llama-2-70B-chat models ex-
hibiting higher accuracy. Performance for Pythia
models of different sizes does not change much,
with the fine-tuned Pythia-6.9B-chat often showing
better performance on single true belief (TB) and
false belief (FB) tasks but not on their conjunction
(Both).

ITI demonstrates modest improvements over no
intervention for Llama-2 models. Improvements
for Pythia models are consistent and higher, up to
+17. The only exception is Pythia-6.9B-chat, for
which ITI is not always beneficial.

CAA consistently delivers the most substantial
accuracy improvements across all models and tasks,
up to 456 for Llama-2-13B-chat on the Backward
Belief task, which Gandhi et al. have identified as
the hardest task. Despite its relatively small size,
Llama-2-13B-chat excels in all three tasks when

using CAA. Larger 70B models often achieve ac-
curacies close to or exceeding 90%. Smaller mod-
els like Pythia-70M and Pythia-410M also show
significant gains with CAA, though the absolute
performance is still lower than Llama-2. To fur-
ther demonstrate CAA’s effectiveness, we applied
it while evaluating models on a control task where
the causal event in the story is replaced by a random
one that does not change the environment (e.g., A
musician starts playing music while Noor is mak-
ing the latte). Table 4 shows improved results for
all models, indicating that CAA improves perfor-
mance on ToM tasks without compromising the
models’ ability on control tasks.

Overall, our results indicate that it is possible to
further enhance ToM reasoning in LMs in a com-
putationally cheap way, without needing to train
any probe. Furthermore, we show that the CAA
steering vectors are general, yielding substantial
performance gains across all ToM tasks.

5 Discussion and Conclusion

In this work, we conducted extensive experiments
across 12 LMs to examine their internal represen-
tation of beliefs of self (oracle) and others (pro-
tagonist). Our experiments show similar emer-
gence patterns across all the models we eval-
uated (RQ1): oracle belief representations gen-
erally form in the first layers, while for protago-
nist they emerge at the intermediate layers. More-
over, probing accuracy increases with model size
and, more crucially for smaller models, with
fine-tuning (RQ1) (Figure 3). While larger models
show higher probing accuracy, this could be due
to their higher dimensionality — at the same time
increasing the number of learning parameters in
the probes and offering more spurious patterns to
fit. To control for this, we ran two experiments:
one using randomly permuted labels, and one pro-



Model Method Forward Belief Forward Action Backward Belief
TB FB Both TB FB Both TB FB Both
Llama-2-7b No int. 44 44 44 44 44 44 44 44 44
ITI 44.0 4440 440 54410 BS540 Bdiwo Bdiio Bdio 5diio
CAA 66350 7135, 54410 66355 5713 54410 603, T4diso 54410
Llama-2-7b-chat No int. 56 56 55 69 55 37 56 56 55
ITI 58,2 58,2 5712 6940 5540 37+0 5842 603 5742
CAA 70114 72016 5742 6940 67+12 53416 66410 847, 5T,
Llama-2-13b No int. 52 44 35 59 50 37 46 49 33
ITI 52,0 45,1 3540 645  6li1 46,0 48,5 59,10 4240
CAA 85133 881/14 66131 71112 69119 55118 75129 92113 59126
Llama-2-13b-chat  No int. 84 56 47 78 51 38 72 48 31
ITI 8410 6519 59,112 7840 58,7 4770 7240 60412 48417
CAA 97413 94%355  91%4, 807, 140 54%16 97425 94546 8T%sg
Llama-2-70b No int. 90 87 78 93 52 48 73 53 32
ITI 90,0 90,5 7840 94.1 55,5  50..  T7.4 58,5  37.s
CAA 9979 9710 95717 944, 80705 T3%25 94401 92739 8315
Llama-2-70b-chat  No int. 69 75 56 86 56 52 63 59 52
ITI 6940 7641 59,9 8640 5640 5240 6340 6041 5419
CAA 92%53 97 89%5, 87, 75519 607 88105 92%35 80408

Table 1: Comparison of the effects of ITI (Li et al., 2023b) and CAA (Rimsky et al., 2023) on three tasks from
BigToM (Gandhi et al., 2023). TB denotes a true belief task, whereas FB denotes a false belief task. The numbers
represent accuracy scores, with the difference in performance compared to no intervention (No int.) indicated as
subscripts. The asterisk (*) denotes a statistically significant difference from No int. based on a t-test with p < 0.05.
Results for Pythia are shown in Table 3. CAA outperforms ITI on all tasks.

jecting activations onto their top-k principal com-
ponents to reduce probe size. Results show that
high-dimensional probes cannot learn random label
mappings (Fig. 8), and that reduced representations
retain most of the original accuracy (Fig. 4, 11,
12). Together, these findings suggest that probes
capture structured belief representations rather
than spurious correlations (RQ2). We then ex-
plore if these representations are robust to prompt
variations. Our experiments demonstrate that LMs
possess robust belief representations when tak-
ing an omniscient perspective (Fig. 10), whereas
their representations of others’ beliefs are more
brittle (RQ3), with probing accuracy decreasing
for semantically neutral prompts (Fig. 5, 9). Our
final set of experiments shows that belief represen-
tations can be strengthened using CAA (RQ4).
CAA steers model activations in a generalisable
way, significantly improving performance across
multiple ToM tasks while being computationally
cheaper than ITI (Table 1, 3). For instance, with
Llama-2-70B, ITI requires training 5,120 probes
(64 attention heads x 80 layers), whereas CAA
only needs 80 vectors, one per layer.

In summary, our key takeaway is that while mod-
els can robustly represent beliefs from an omni-
scient perspective,

representations of others’ beliefs improve
with model size and fine-tuning, are struc-

tured yet brittle — but also easily steerable.

Together, our findings suggest several promising
directions for future work. Better understanding
the similar emergence pattern of belief representa-
tions across LMs can inform architecture design
and training strategies. Especially for smaller mod-
els, future work could explore how different types
of fine-tuning (e.g., human feedback vs. synthetic
data) influence the emergence of internal belief
representations. Demonstrating that these repre-
sentations are structured rather than spurious val-
idates the use of probing as a meaningful tool to
study how LMs’ represent beliefs of self and oth-
ers, and encourages internal model analysis as part
of evaluation pipelines. However, the brittleness
of belief representations to prompts — particularly
when attributing beliefs to others — suggests that
the perspective-taking machinery needed for ro-
bust ToM reasoning remains fragile, and highlights
the need for robustness benchmarks and new ap-
proaches to improve generalisation. Finally, our
success with CAA shows that belief representa-
tions can be strengthened in a generalisable and
efficient way, opening up opportunities for real-
time model steering in socially grounded tasks.
While CAA offers a post-hoc remedy, future re-
search should also explore methods for directly
embedding perspective-taking circuits into model
architectures.



Limitations

Our study focused on expanding experiments from
the model perspective, examining architectures,
sizes, fine-tuning, and prompt design, all within
the same dataset. A natural extension of our work
is replicating these experiments across multiple
datasets and more model families. Given the rapid
pace of new language model releases, studying all
available models is impractical, particularly con-
sidering computational resource constraints. Nev-
ertheless, our approach can be adopted to support
new benchmarks or to evaluate newly released mod-
els as they become available. Finally, while in this
work we focused on beliefs, our experimental ap-
proach can be adapted to investigate how LMs rep-
resent desires, emotions, intentions, or preferences.
Future research exploring other types of mental
states can use our findings to determine whether
similar or distinct patterns emerge.
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A Appendix

A.1 Experimental setup

A.1.1 BigToM

BigToM (Gandhi et al., 2023) is constructed using
GPT-4 (Achiam et al., 2023) to populate causal
templates and combine elements from these tem-
plates. Each causal template is set up with a context
and a description of the protagonist (e.g. “Noor
is working as a barista [...]”), a desire (“Noor
wants to make a cappuccino”), a percept (“Noor
grabs a milk pitcher and fills it with oat milk”), and
a belief (“Noor believes that the pitcher contains
oat milk”). The state of the world is changed by a
causal event (“A coworker swaps the oat milk in the
pitcher with almond milk”). The dataset constructs
different conditions by changing the percepts of
the protagonist after the causal event, which will re-
sult in different beliefs — true or false. Gandhi et al.
(2023) generated 200 templates and extracted 25
conditions from each template, resulting in 5,000
test samples. In this work, following Zhu et al.
(2024) and Gandhi et al. (2023) we focused on
the 6 most important conditions, corresponding to
true and false beliefs on the following three tasks:

e Forward Belief: given the protagonist’s per-
cepts of the causal event, infer their belief:
P(belief |percept).

» Forward Action: infer the protagonist’s action
given their desire and percepts of the causal
event. Before inferring the action, one would
need to first implicitly infer the protagonist’s be-
lief: D"\ ior P(action|percept, belief, desire).

* Backward Belief: infer the protagonist’s be-
lief from observed actions. This requires to
first implicitly infer the protagonist’s percepts:
Zpercepts P(belief|action, percept, desire).
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The dataset was released under the MIT license
and can be accessed at https://github.com/
cicl-stanford/procedural-evals-tom. We re-
port one example for each task in Example 1, 2,
and 3, where the text defining true belief or false
belief task is shown in and red, respectively.

A.1.2 Linear probes

Our probing approach is illustrated in Figure 6. For
our experiments, we cache activations at the resid-
ual stream level. To perform ITI and compare it
to CAA, we also cache attention heads activations.
We trained the probes using the L-BFGS solver
(Liu and Nocedal, 1989) with L2 penalty with in-
verse of regularisation strength 10 for a maximum
of 1000 iterations. We use zero as random seed.

A.1.3 Language models

A detailed summary of the models we use in this
work is shown in Table 2. Pythia was released un-
der the Apache 2.0 license. Llama-2 is licensed by
Meta for both researchers and commercial entities
(Touvron et al., 2023). For all the models, we set
the temperature to zero.

A.1.4 Examples of prompt variations

Example 4 shows an example of Original prompt.
Examples of prompt variations are provided in Ex-
ample 5 (Random), Example 6 (Misleading), Exam-
ple 7 (Time Specification), and Example 8 (Initial
Belief).

A.2 Model size and fine-tuning

To characterise the relationship between probe ac-
curacy and model size we consider the best probe
accuracy for every LM, i.e. the highest accuracy
among probes {g;} trained on {a;} for a LM f.
For Llama-2 base, the best probe accuracy scales
logarithmically with model size (R? = 0.98, Fig-
ure 7b), whereas for fine-tuned models it scales
linearly (R = 1.0, cf. Figure 7c). For Pythia base,
the best probe accuracy also scales logarithmically
with model size (R? = 0.96, Figure 7d).

A.2.1 Opverfitting Issues

Figure 3 also that probing accuracy at early lay-
ers is particularly low across all models, perform-
ing even worse than random. This happens due to
overfitting, which may be caused by spurious fea-
tures introduced by the initial coding strategy of
language models, where individual token represen-
tations are mixed together (Gurnee et al., 2023).
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We also identified the same issue when reproduc-
ing the results in Zhu et al. (2024), who address
it by manually clipping all accuracies below ran-
dom chance to 50%.* Since probing experiments
require training a large number of probes for each
model, both we and Zhu et al. (2024) trained each
probe for the same fixed number of epochs (1,000).
However, for activations from the earlier layers,
overfitting occurs very quickly - often within the
first 10 iterations.

We ran an experiment with Llama2-7B-chat, re-
ducing training to fewer than 10 iterations, and
found that the probes performed at random chance.
Therefore, to fully resolve this issue, we would
need to choose the number of training epochs for
each probe individually. This would likely flatten
the observed "U" shape in the results. However, this
process would be computationally expensive and
does not contribute to our main research questions.
Rather than artificially adjusting accuracies to 50%,
we prefer to present the results as they are.

A.3 Sensitivity to prompting

Accuracy on protagonist belief probing for Pythia
models is shown in Figure 9.

Accuracy on oracle belief probing for different
prompt variations are reported in Figure 10.

A.4 Dimensionality reduction

Probing accuracy obtained by Pythia models for
the protagonist setting is reported in Figure 11.

Oracle probe accuracy obtained by consider-
ing only the first n = {2, 10,100, 1000} principal
components are shown in Figure 12.

A.5 Inference-time intervention

Inference-time intervention (Li et al., 2023b, ITI)
employs a two-step process. First, it trains a probe
for each attention head across all layers of a LM.
These probes are evaluated on a validation set, and
the top-k heads with the highest accuracy are se-
lected. Subsequently, during inference, ITI steers
the activations of these top heads along the direc-
tions defined by their corresponding probes. For-
mally, I'TI can be defined as an additional term to
the multi-head attention:

H
Ty =+ Z QP (Att?(Plh:cl) + (m,hH;L)
h=1

*https://github.com/Walter@807/RepBelief/blob/
0fc86396f2f0a998643ea01786eb3db4dd20ff9c/probe.
py#L60
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Noor is working as a tokens —— embed + US " — unembed — logits

barista at a busy coffee shop [...] IS L ’
ho ey |

The milk pitcher contains ~

almond milk. by
~
layer [
Figure 6: Given a tokenised input, we cache the internal activations for all attention heads h;,7 =0,..., H — 1, and

residual streams. In our experiments, we use residual stream activations.

LM Size +SFT +RLHF Tokens d,,.qe Layers
7B 2T 4096 32
Llama-2 13B 2T 5120 40
70B 2T 8192 80
7B v v 2T 4096 32
Llama-2-chat 13B v v 2T 5120 40
70B v v 2T 8192 80
70M 300B 512 6
410M 300B 1024 24
Pythia 1B 300B 2048 16
6.9B 300B 4096 32
12B 300B 5120 36
6.9B v 300B 4096 32

Table 2: The 12 models used in this work.

where z; is the residual stream at layer [, H is the
number of attention heads, o € RT is a coeffi-
cient, alh is the standard deviation of activations
along the direction identified by the probe trained
on attention head h at layer [, and Glh is zero ofr
not-selected attention heads.

A.6 Activation editing

Table 3 reports results obtained on the three Big-
ToM tasks with the corresponding hyperparameters
used for ITI (Li et al., 2023b) and CAA (Rimsky
et al., 2023). We report an example of prompt used
for evaluation in Example 9. Table 4 shows the
accuracy obtained by using CAA on the Forward
Belief True Control task in BigToM. On this con-
trol task, CAA produced improved results for all
model, proving that CAA not only improves per-
formance on ToM tasks, but also does not degrades
the models’ ability to perform other tasks.

A.7 Compute resources

We ran our experiments on a server running Ubuntu
22.04, equipped with eight NVIDIA Tesla V100-
SXM2 GPUs with 32GB of memory and Intel Xeon
Platinum 8260 CPUs.
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A.8 Code

Our code is provided as supplementary material
and it will be made public under the MIT licence
at www.this-is-a-placeholder.com.

A.9 Societal impact

While our work is foundational and remains dis-
tant from specific applications with direct societal
impact, it’s important to recognise the ethical im-
plications of predicting and editing mental state
representations.

Handling sensitive aspects of individuals’ inner
experiences and emotions requires careful consid-
eration to avoid reinforcing biases or misunder-
standing psychological nuances. As LMs begin to
encode aspects of ToM, there’s a risk that over-
interpreting these capabilities could lead to mis-
placed trust — especially in real-world applications
requiring nuanced social reasoning, such as educa-
tion, healthcare, or mental health support.

Furthermore, while techniques like CAA show
promise for steering internal representations, they
also potentially introduce new ethical challenges.
Manipulating a model’s internal states, especially
in ways that affect social reasoning, requires trans-


www.this-is-a-placeholder.com

Llama-2 Llama-2 Base Llama-2 Chat Pythia Base

— 2 Iy _ ry
% .io 85 R?=0.98 92 R2=1.0 60 R?2=0.96 °
> >
385 - 8 80 g9 gs0
5 ! 3 pae 5
§80 i+1‘12 §75 §88 §40 o
<75 | | = ° < <
g 20 @ 70 7 86 30
@’ —-@- Base @ m a4 ] °
65 Chat i - < N
[ ]
82
713 70 10" 12 3 4 5 6 7 10° 10° 10"
Model Size (B) Model Size (log) Model Size 1e10 Model Size (log)
(@) (b) (©) (d)

Figure 7: To characterise the relationship between probe accuracy and model size we consider the best probe
accuracy for every LM, i.e. the highest accuracy among probes {g;} trained on {a; } fora LM f. (a) Best accuracy
for Llama-2 models of different size. Numbers on the vertical dotted lines indicate the gain in accuracy between base
and fine-tuned model of the same size. (b) Logarithmic fit for Llama-2 base. (¢) Linear fit for Llama-2 fine-tuned
(chat). (d) Logarithmic fit for Pythia base.

parency and caution to avoid unintended conse-
quences such as bias amplification or fairness is-
sues. Future work should consider not only im-
proving technical performance but also developing
safeguards and evaluation frameworks to ensure
responsible use of ToM-like abilities in LMs.
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Figure 8: Comparison between accuracy on belief probing and accuracy obtained on a control task.
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Figure 10: Sensitivity of protagonist belief probing accuracy to different prompt variations.
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Figure 11: We compare the probing accuracy obtained by using the original set of activations (All) with the accuracy
obtained by considering only the first n = {2, 10, 100, 1000} principal components. For Pythia: All(70m) = 512,
All(410m) = 1024, All(1b) = 2048, All(6.9b) = 4096, All(12b) = 5120. Results for oracle are shown in Figure 12.
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Figure 12: (Oracle) To investigate potential memorisation in the probes, we compare the probing accuracy ob-
tained by using the original set of activations (All) with the accuracy obtained by considering only the first
n = {2,10,100, 1000} principal components. For Llama2: All(7b) = 4096, All(13b) = 5120, All(70b) = 8192. For
Pythia: All(70m) = 512, All(410m) = 1024, All(1b) = 2048, All(6.9b) = 4096, All(12b) = 5120.
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Model Method Forward Belief Forward Action Backward Belief
TB FB Both TB FB Both TB FB Both
Llama-2-7b No int. 44 44 44 44 44 44 44 44 44
ITT 4400 440.0 4400 5420.0 54200  Ddo00 54200  Sdooo  Hdooo
CAA 662.0,11 7lio31 H4200 662011 572012 4202 602011 741031 94202
Llama-2-7b-chat No int. 56 56 55 69 55 37 56 56 55
ITI 58150 958150 57150 690.0 550.0 370.0 5810.0 60100 57100
CAA 701011 721510 57101 6900 671511 931512 661011 841510 571.00
Llama-2-13b No int. 52 44 35 59 50 37 46 49 33
ITI 520.0 45150 350.0 64150 61200 46200 48200 99200 42200
CAA 852012 882014 6062012 T7lis10 692013 551030 752010 922013 9591512
Llama-2-13b-chat No int. 84 56 47 78 51 38 72 48 31
ITI 84p.0 65150 59150 780.0 98150 47150 720.0 60150 48150
CAA 971012 9%.012 91012 801511 7lioiz Shis13 971510 941512 871512
Llama-2-70b No int. 90 87 78 93 52 48 73 53 32
ITI 900.0 9020.0 780.0 94150 55200 50150 77100 58150 37100
CAA 992016 9715190 951518 94152 802019 731518 942018 922019 831519
Llama-2-70b-chat No int. 69 75 56 86 56 52 63 59 52
ITT 690.0 76100  5910.0 860.0 560.0 520.0 630.0 6010.0 54100
CAA 921518 971525 891518 871517 791019 601019 881518 921019 801518
Pythia-70m No int. 41 41 37 46 45 41 44 41 37
ITI 54200 54200  H4o00  OS4200 54200 4200 54200  Sdooo  Hdaoo
CAA 62102 56101 54151 99102 60103 58102 63102 56102 54151
Pythia-410m No int. 48 45 45 44 44 44 44 47 44
ITI 59200 62200 52200 54200 94200  Dd200 60200 63200 56200
CAA 67204 64204 6logo 96206 631512 56206 69204 63200 60200
Pythia-1b No int. 44 44 44 44 44 44 44 44 44
ITI 94200 54200  H4200 54200 94200  Ddo0o  Sdo00 94200 D200
CAA 59208 62205 54200 57204 592010 56204 57203 60205 Hdo0,0
Pythia-6.9b No int. 44 44 44 44 44 44 44 44 44
ITI 45200  H420.0 4400 54200 54200  S4200 54200 54200 54200
CAA 561512 Tlisg 552023 55204 631511 Hd2o4 552023 Tlisg 552023
Pythia-6.9b-chat No int. 55 54 28 36 64 20 44 67 30
ITI 5715.0 540.0 2800 44150 Tliso 32150  44oo 670.0 300.0
CAA 681515 651512 571511 941510 79155 481510 581515 67000 941510
Pythia-12b No int. 44 44 44 44 44 44 44 44 44
ITI 54200 54200  H4o00  OS4200  Sd200  SHdo00 54200  Sdooo  Hdaoo
CAA 54200 64209 54200 602011 582011 552012 54200 672010 H42.0,0

Table 3: Activation intervention: comparison between ITI (Li et al., 2023b) and CAA (Rimsky et al., 2023). For ITI,
the subscript indicates the value of the coefficient ayr used: Acc,,.,. For CAA, the subscript indicates first the
value of the coefficient a used and second the layer [ at which intervention takes place: Accq,  i-
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Model Method Control CAA Parameters

Llama-2-7b No int. 44

CAA 66122 2.0, 11
Llama-2-7b-chat No int. 56

CAA 70414 1.0, 11
Llama-2-13b No int. 52

CAA 85433 2.0,12
Llama-2-13b-chat  No int. 84

CAA 97113 1.0, 12
Llama-2-70b No int. 90

CAA 99,49 2.0, 16
Llama-2-70b-chat  No int. 69

CAA 92423 1.5, 18
Pythia-70m No int. 41

CAA 62421 1.0,2
Pythia-410m No int. 48

CAA 67119 2.0,4
Pythia-1b No int. 44

CAA 594115 2.0,8
Pythia-6.9b No int. 44

CAA 56412 1.5,12
Pythia-6.9b-chat No int. 55

CAA 68113 1.5, 15
Pythia-12b No int. 44

CAA 54119 2.0,0

Table 4: Results for CAA (Rimsky et al., 2023) on the Forward Belief True Control task in BigToM (Gandhi et al.,
2023). Numbers indicate accuracy scores, with differences (CAA — No int.) as subscripts.
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Example 1: Forward Belief

Noor is working as a barista at a busy coffee shop. Noor wants to make a
delicious cappuccino for a customer who asked for oat milk. Noor grabs a milk
pitcher and fills it with oat milk. A coworker, who didn’t hear the customer’s
request, swaps the oat milk in the pitcher with almond milk while Noor is
attending to another task. Noor sees her coworker swapping the milk. Noor does
not see her coworker swapping the milk.

Does Noor believe the milk pitcher contains oat milk or almond milk?

a) Noor believes the milk pitcher contains oat milk.

b) Noor believes the milk pitcher contains almond milk.

Example 2: Forward Action

| V

Noor is working as a barista at a busy coffee shop. Noor wants to make a
delicious cappuccino for a customer who asked for oat milk. Noor grabs a milk
pitcher and fills it with oat milk. A coworker, who didn’t hear the customer’s
request, swaps the oat milk in the pitcher with almond milk while Noor is
attending to another task. Noor sees her coworker swapping the milk. Noor does
not see her coworker swapping the milk.

What will Noor do?

a) Noor will make the cappuccino using the milk in the pitcher.

b) Noor will open the fridge once again to take out the oat milk and replace
the almond milk with oat milk.

| r

Example 3: Backward Belief

Noor is working as a barista at a busy coffee shop. Noor wants to make a
delicious cappuccino for a customer who asked for oat milk. Noor grabs a milk
pitcher and fills it with oat milk. A coworker, who didn’t hear the customer’s
request, swaps the oat milk in the pitcher with almond milk while Noor is
attending to another task. Noor opens the fridge again and reaches for the oat
milk. Noor makes the cappuccino using the milk in the pitcher.

Does Noor believe the milk pitcher contains oat milk or almond milk?

a) Noor believes the milk pitcher contains oat milk.

b) Noor believes the milk pitcher contains almond milk.

| r

Example 4: Default prompt

Story: Noor is working as a barista at a busy coffee shop. Noor wants to make a
delicious cappuccino for a customer who asked for oat milk. Noor grabs a milk
pitcher and fills it with oat milk. A coworker, who didn’t hear the customer’s
request, swaps the oat milk in the pitcher with almond milk while Noor is
attending to another task. Noor does not see her coworker swapping the milk.
Belief: Noor believes the milk pitcher contains oat milk.




Example 5: Prompt variation — Random

Story: Noor is working as a barista at a busy coffee shop. Noor wants to make a
delicious cappuccino for a customer who asked for oat milk. Noor grabs a milk
pitcher and fills it with oat milk. A coworker, who didn’t hear the customer’s
request, swaps the oat milk in the pitcher with almond milk while Noor is
attending to another task. Noor does not see her coworker swapping the milk.
Belief': Noor believes the
milk pitcher contains oat milk.

Example 6: Prompt variation — Misleading

Story: Noor is working as a barista at a busy coffee shop. Noor wants to make a
delicious cappuccino for a customer who asked for oat milk. Noor grabs a milk
pitcher and fills it with oat milk. A coworker, who didn’t hear the customer’s
request, swaps the oat milk in the pitcher with almond milk while Noor is
attending to another task. Noor does not see her coworker swapping the milk.
Belief: Noor believes the milk pitcher contains oat milk.

Example 7: Prompt variation — Time specification

Story: Noor is working as a barista at a busy coffee shop. Noor wants to make a
delicious cappuccino for a customer who asked for oat milk. Noor grabs a milk
pitcher and fills it with oat milk. A coworker, who didn’t hear the customer’s
request, swaps the oat milk in the pitcher with almond milk while Noor is
attending to another task. Noor does not see her coworker swapping the milk.
Belief: Noor believes the milk pitcher contains oat milk.

Example 8: Prompt variation — Initial belief

Story: Noor is working as a barista at a busy coffee shop. Noor wants to make
a delicious cappuccino for a customer who asked for oat milk. Noor grabs a
milk pitcher and fills it with oat milk.

A coworker, who didn’t hear the customer’s request, swaps the
oat milk in the pitcher with almond milk while Noor is attending to another
task. Noor does not see her coworker swapping the milk.

Belief: Noor believes the milk pitcher contains oat milk.
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Example 9: Prompt used for downstream evaluation

Answer the questions based on the context. Keep your answer concise, few words
are enough, maximum one sentence. Answer as ’Answer:<option>)<answer>’.

Story: Noor is working as a barista at a busy coffee shop. Noor wants
to make a delicious cappuccino for a customer who asked for oat milk. Noor
grabs a milk pitcher and fills it with oat milk. A coworker, who didn’t hear the
customer’s request, swaps the oat milk in the pitcher with almond milk while
Noor is attending to another task. Noor does not see her coworker swapping the
milk.

Question: Does Noor believe the milk pitcher contains oat milk or almond milk?
Choose one of the following:

a) Noor believes the milk pitcher contains oat milk.

b) Noor believes the milk pitcher contains almond milk.

Answer:
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