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Eye Movement Analysis for Activity Recognition
Using Electrooculography

Andreas Bulling, Student Member, IEEE, Jamie A. Ward, Hans Gellersen, and
Gerhard Troster, Senior Member, IEEE

Abstract—In this work, we investigate eye movement analysis as a new sensing modality for activity recognition. Eye movement data
were recorded using an electrooculography (EOG) system. We first describe and evaluate algorithms for detecting three eye
movement characteristics from EOG signals—saccades, fixations, and blinks—and propose a method for assessing repetitive patterns
of eye movements. We then devise 90 different features based on these characteristics and select a subset of them using minimum
redundancy maximum relevance (mnRMR) feature selection. We validate the method using an eight participant study in an office
environment using an example set of five activity classes: copying a text, reading a printed paper, taking handwritten notes, watching a
video, and browsing the Web. We also include periods with no specific activity (the NULL class). Using a support vector machine
(SVM) classifier and person-independent (leave-one-person-out) training, we obtain an average precision of 76.1 percent and recall of
70.5 percent over all classes and participants. The work demonstrates the promise of eye-based activity recognition (EAR) and opens
up discussion on the wider applicability of EAR to other activities that are difficult, or even impossible, to detect using common sensing

modalities.

Index Terms—Ubiquitous computing, feature evaluation and selection, pattern analysis, signal processing.

1 INTRODUCTION

HUMAN activity recognition has become an important
application area for pattern recognition. Research in
computer vision has traditionally been at the forefront of
this work [1], [2]. The growing use of ambient and body-
worn sensors has paved the way for other sensing
modalities, particularly in the domain of ubiquitous
computing. Important advances in activity recognition were
achieved using modalities such as body movement and
posture [3], sound [4], or interactions between people [5].
There are, however, limitations to current sensor config-
urations. Accelerometers or gyroscopes, for example, are
limited to sensing physical activity; they cannot easily be used
for detecting predominantly visual tasks, such as reading,
browsing the Web, or watching a video. Common ambient
sensors, such as reed switches or light sensors, are limited in
that they only detect basic activity events, e.g., entering or
leaving a room or switching an appliance on or off. Further to
these limitations, activity sensing using subtle cues, such as
user attention or intention, remains largely unexplored.
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A rich source of information, as yet unused for activity
recognition, is the movement of the eyes. The movement
patterns our eyes perform as we carry out specific
activities have the potential to reveal much about the
activities themselves—independently of what we are
looking at. This includes information on visual tasks, such
as reading [6], information on predominantly physical
activities, such as driving a car, but also on cognitive
processes of visual perception, such as attention [7] or
saliency determination [8]. In a similar manner, location or
a particular environment may influence our eye move-
ments. Because we use our eyes in almost everything that
we do, it is conceivable that eye movements provide useful
information for activity recognition.

Developing sensors to record eye movements in daily life
is still an active topic of research. Mobile settings call for
highly miniaturized, low-power eye trackers with real-time
processing capabilities. These requirements are increasingly
addressed by commonly used video-based systems, of
which some can now be worn as relatively light headgear.
However, these remain expensive, with demanding video
processing tasks requiring bulky auxiliary equipment.
Electrooculography (EOG)—the measurement technique
used in this work—is an inexpensive method for mobile
eye movement recordings; it is computationally light
weight and can be implemented using wearable sensors
[9]. This is crucial with a view to long-term recordings in
mobile real-world settings.

1.1 Paper Scope and Contributions

The aim of this work is to assess the feasibility of
recognizing human activity using eye movement analysis,
so-called eye-based activity recognition (EAR)." The specific
contributions are:

1. An earlier version of this paper was published in [10].
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1. the introduction of eye movement analysis as a new
sensing modality for activity recognition,

2. the development and characterization of new algo-
rithms for detecting three basic eye movement types
from EOG signals (saccades, fixations, and blinks) and
a method to assess repetitive eye movement patterns,

3. the development and evaluation of 90 features
derived from these eye movement types, and

4. the implementation of a method for continuous EAR
and its evaluation using a multiparticipant EOG data
set involving a study of five real-world office
activities.

1.2 Paper Organization

We first survey related work, introduce EOG, and describe
the main eye movement characteristics that we identify as
useful for EAR. We then detail and characterize the
recognition methodology: the methods used for removing
drift and noise from EOG signals, and the algorithms
developed for detecting saccades, fixations, blinks, and for
analyzing repetitive eye movement patterns. Based on
these eye movement characteristics, we develop 90 features;
some directly derived from a particular characteristic,
others devised to capture additional aspects of eye move-
ment dynamics.

We rank these features using minimum redundancy
maximum relevance (mRMR) feature selection and a
support vector machine (SVM) classifier. To evaluate both
algorithms on a real-world example, we devise an experi-
ment involving a continuous sequence of five office
activities, plus a period without any specific activity (the
NULL class). Finally, we discuss the findings gained from
this experiment and give an outlook to future work.

2 REeLATED WORK

2.1 Electrooculography Applications

Eye movement characteristics such as saccades, fixations,
and blinks, as well as deliberate movement patterns
detected in EOG signals, have already been used for
hands-free operation of static human-computer [11] and
human-robot [12] interfaces. EOG-based interfaces have
also been developed for assistive robots [13] or as a control
for an electric wheelchair [14]. Such systems are intended to
be used by physically disabled people who have extremely
limited peripheral mobility but still retain eye-motor
coordination. These studies showed that EOG is a measure-
ment technique that is inexpensive, easy to use, reliable, and
relatively unobtrusive when compared to head-worn
cameras used in video-based eye trackers. While these
applications all used EOG as a direct control interface, our
approach is to use EOG as a source of information on a
person’s activity.

2.2 Eye Movement Analysis

A growing number of researchers use video-based eye
tracking to study eye movements in natural environments.
This has led to important advances in our understanding of
how the brain processes tasks, and of the role that the visual
system plays in this [15]. Eye movement analysis has a long
history as a tool to investigate visual behavior. In an early
study, Hacisalihzade et al. used Markov processes to model
visual fixations of observers recognizing an object [16]. They

transformed fixation sequences into character strings and
used the string edit distance to quantify the similarity of eye
movements. Elhelw et al. used discrete time Markov chains
on sequences of temporal fixations to identify salient image
features that affect the perception of visual realism [17].
They found that fixation clusters were able to uncover the
features that most attract an observer’s attention. Dempere-
Marco et al. presented a method for training novices in
assessing tomography images [18]. They modeled the
assessment behavior of domain experts based on the
dynamics of their saccadic eye movements. Salvucci and
Anderson evaluated means for automated analysis of eye
movements [19]. They described three methods based on
sequence-matching and hidden Markov models that inter-
preted eye movements as accurately as human experts but
in significantly less time.

All of these studies aimed to model visual behavior
during specific tasks using a small number of well-known
eye movement characteristics. They explored the link
between the task and eye movements, but did not recognize
the task or activity using this information.

2.3 Activity Recognition

In ubiquitous computing, one goal of activity recognition is
to provide information that allows a system to best assist
the user with his or her task [20]. Traditionally, activity
recognition research has focused on gait, posture, and
gesture. Bao and Intille used body-worn accelerometers to
detect 20 physical activities, such as cycling, walking, and
scrubbing the floor, under real-world conditions [21]. Logan
et al. studied a wide range of daily activities, such as using a
dishwasher or watching television, using a large variety
and number of ambient sensors, including RFID tags and
infrared motion detectors [22]. Ward et al. investigated the
use of wrist-worn accelerometers and microphones in a
wood workshop to detect activities, such as hammering or
cutting wood [4]. Several researchers investigated the
recognition of reading activity in stationary and mobile
settings using different eye tracking techniques [6], [23].
Our work, however, is the first to describe and apply a
general-purpose architecture for EAR to the problem of
recognizing everyday activities.

3 BACKGROUND

3.1 Electrooculography

The eye can be modeled as a dipole with its positive pole at
the cornea and its negative pole at the retina. Assuming a
stable corneo-retinal potential difference, the eye is the
origin of a steady electric potential field. The electrical
signal that can be measured from this field is called the
electrooculogram (EOG).

If the eye moves from the center position toward the
periphery, the retina approaches one electrode while the
cornea approaches the opposing one. This change in
dipole orientation causes a change in the electric potential
field and thus the measured EOG signal amplitude. By
analyzing these changes, eye movements can be tracked.
Using two pairs of skin electrodes placed at opposite sides of
the eye and an additional reference electrode on the forehead,
two signal components (EOGy, and EOG,), corresponding to
two movement components—a horizontal and a vertical—
can be identified. EOG typically shows signal amplitudes
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Fig. 1. Denoised and baseline drift removed horizontal (EOG;) and
vertical (EOG,) signal components. Examples of the three main eye
movement types are marked in gray: saccades (S), fixations (F), and
blinks (B).

ranging from 5 to 20 puV/degree and an essential frequency
content between 0 and 30 Hz [24].

3.2 Eye Movement Types

To be able to use eye movement analysis for activity
recognition, it is important to understand the different types
of eye movement. We identified three basic eye movement
types that can be easily detected using EOG: saccades,
fixations, and blinks (see Fig. 1).

3.2.1 Saccades

The eyes do not remain still when viewing a visual scene.
Instead, they have to move constantly to build up a mental
“map” from interesting parts of that scene. The main reason
for this is that only a small central region of the retina, the
fovea, is able to perceive with high acuity. The simulta-
neous movement of both eyes is called a saccade. The
duration of a saccade depends on the angular distance the
eyes travel during this movement: the so-called saccade
amplitude. Typical characteristics of saccadic eye move-
ments are 20 degrees for the amplitude, and 10 to 100 ms for
the duration [25].

3.2.2 Fixations

Fixations are the stationary states of the eyes during which
gaze is held upon a specific location in the visual scene.
Fixations are usually defined as the time between each two
saccades. The average fixation duration lies between 100
and 200 ms [26].

3.2.3 Blinks

The frontal part of the cornea is coated with a thin liquid
film, the so-called “precornial tear film.” To spread this
fluid across the corneal surface, regular opening and closing
of the eyelids, or blinking, is required. The average blink
rate varies between 12 and 19 blinks per minute while at
rest [27]; it is influenced by environmental factors such as
relative humidity, temperature, or brightness, but also by
physical activity, cognitive workload, or fatigue [28]. The
average blink duration lies between 100 and 400 ms [29].

4 METHODOLOGY

We first provide an overview of the architecture for EAR
used in this work. We then detail our algorithms for

EOG, EOG,
Baseline Drift Baseline Drift
Removal Removal
Noise Noise
Removal Removal
Saccade Saccade
Detection Detection
§ Eye Movement L, Fixation el Blink
; Encoding i Detection Detection
Wordbook > Feature
3 Analysis Feoe Extraction
Featu‘re —>| Classification
Selection

Fig. 2. Architecture for eye-based activity recognition on the example of
EOG. Light gray indicates EOG signal processing; dark gray indicates
use of a sliding window.

removing baseline drift and noise from EOG signals, for
detecting the three basic eye movement types, and for
analyzing repetitive patterns of eye movements. Finally, we
describe the features extracted from these basic eye move-
ment types and introduce the minimum redundancy
maximum relevance feature selection and the support
vector machine classifier.

4.1 Recognition Architecture

Fig. 2 shows the overall architecture for EAR. The methods
were all implemented offline using MATLAB and C. Input
to the processing chain are the two EOG signals capturing
the horizontal and the vertical eye movement components.
In the first stage, these signals are processed to remove any
artifacts that might hamper eye movement analysis. In the
case of EOG signals, we apply algorithms for baseline drift
and noise removal. Only this initial processing depends on
the particular eye tracking technique used; all further stages
are completely independent of the underlying type of
eye movement data. In the next stage, three different eye
movement types are detected from the processed eye
movement data: saccades, fixations, and blinks. The
corresponding eye movement events returned by the
detection algorithms are the basis for extracting different
eye movement features using a sliding window. In the last
stage, a hybrid method selects the most relevant of these
features, and uses them for classification.

4.2 EOG Signal Processing

4.2.1 Baseline Drift Removal

Baseline drift is a slow signal change superposing the EOG
signal but mostly unrelated to eye movements. It has many
possible sources, e.g., interfering background signals or
electrode polarization [30]. Baseline drift only marginally
influences the EOG signal during saccades; however, all
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other eye movements are subject to baseline drift. In a five-
electrode setup, as used in this work (see Fig. 8), baseline
drift may also differ between the horizontal and vertical
EOG signal component.

Several approaches to remove baseline drift from
electrocardiography (ECG) signals have been proposed
(for example, see [31], [32], [33]). As ECG shows repetitive
signal characteristics, these algorithms perform sufficiently
well at removing baseline drift. However, for signals with
nonrepetitive characteristics such as EOG, developing
algorithms for baseline drift removal is still an active area
of research. We used an approach based on wavelet
transform [34]. The algorithm first performed an approxi-
mated multilevel 1D wavelet decomposition at level nine
using Daubechies wavelets on each EOG signal component.
The reconstructed decomposition coefficients gave a base-
line drift estimation. Subtracting this estimation from each
original signal component yielded the corrected signals
with reduced drift offset.

4.2.2 Noise Removal

EOG signals may be corrupted with noise from different
sources, such as the residential power line, the measurement
circuitry, electrodes, and wires, or other interfering physio-
logical sources such as electromyographic (EMG) signals. In
addition, simultaneous physical activity may cause the
electrodes to loose contact or move on the skin. As mentioned
before, EOG signals are typically nonrepetitive. This prohi-
bits the application of denoising algorithms that make use of
structural and temporal knowledge about the signal.

Several EOG signal characteristics need to be preserved
by the denoising. First, the steepness of signal edges needs
to be retained to be able to detect blinks and saccades.
Second, EOG signal amplitudes need to be preserved to be
able to distinguish between different types and directions of
saccadic eye movements. Finally, denoising filters must not
introduce signal artifacts that may be misinterpreted as
saccades or blinks in subsequent signal processing steps.

To identify suitable methods for noise removal, we
compared three different algorithms on real and synthetic
EOG data: a low-pass filter, a filter based on wavelet
shrinkage denoising [35], and a median filter. By visual
inspection of the denoised signal, we found that the median
filter performed best; it preserved edge steepness of
saccadic eye movements, retained EOG signal amplitudes,
and did not introduce any artificial signal changes. It is
crucial, however, to choose a window size W, s that is small
enough to retain short signal pulses, particularly those
caused by blinks. A median filter removes pulses of a width
smaller than about half of its window size. By taking into
account the average blink duration reported earlier, we
fixed W,s to 150 ms.

4.3 Detection of Basic Eye Movement Types

Different types of eye movements can be detected from the
processed EOG signals. In this work, saccades, fixations,
and blinks form the basis of all eye movement features used
for classification. The robustness of the algorithms for
detecting these is key to achieving good recognition
performance. Saccade detection is particularly important
because fixation detection, eye movement encoding, and the
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Fig. 8. Continuous Wavelet Transform—Saccade Detection algorithm.
(a) Denoised and baseline drift removed horizontal EOG signal during
reading with example saccade amplitude (S4); (b) the transformed
wavelet signal (FOG,;), with application-specific small (+thg,.;) and
large (fthiree) thresholds; (c) marker vectors for distinguishing between
small (M,qi) and large (Mq,.) saccades; and (d) example character
encoding for part of the EOG signal.

wordbook analysis are all reliant on it (see Fig. 2). In the
following, we introduce our saccade and blink detection
algorithms and characterize their performance on EOG
signals recorded under constrained conditions.

4.3.1 Saccade and Fixation Detection

For saccade detection, we developed the so-called Contin-
uous Wavelet Transform—Saccade Detection (CWT-SD) algo-
rithm (see Fig. 3 for an example). Input to CWT-SD are the
denoised and baseline drift removed EOG signal compo-
nents EOG, and EOG,. CWT-SD first computes the
continuous 1D wavelet coefficients at scale 20 using a Haar
mother wavelet. Let s be one of these signal components
and 1 the mother wavelet. The wavelet coefficient Cj of s at
scale a and position b is defined

cie) = [ st v (20

By applying an application-specific threshold th,,; on the
coefficients C;(s) = C?°(s), CWT-SD creates a vector M with
elements M;:

1, Vi : Ct(é) < _th5[17
Mi — —1’ Vi : C,j(S) > thsd,
0, Vi: —thg <Ci(s) < thy.

This step divides EOG; and EOG, in saccadic
(M =1, -1) and nonsaccadic (fixational) (M = 0) segments.

Saccadic segments shorter than 20 ms and longer than
200 ms are removed. These boundaries approximate the
typical physiological saccade characteristics described in
literature [25]. CWT-SD then calculates the amplitude and
direction of each detected saccade. The saccade amplitude
Sy is the difference in EOG signal amplitude before and
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after the saccade (c.f. Fig. 3). The direction is derived from
the sign of the corresponding elements in M. Finally, each
saccade is encoded into a character representing the
combination of amplitude and direction. For example, a
small saccade in EOGy, with negative direction gets encoded
as “r” and a large saccade with positive direction as “L.”

Humans typically alternate between saccades and fixa-
tions. This allows us to also use CWT-SD for detecting
fixations. The algorithm exploits the fact that gaze remains
stable during a fixation. This results in the corresponding
gaze points, i.e., the points in a visual scene that the gaze is
directed at, to cluster together closely in time. Therefore,
fixations can be identified by thresholding on the dispersion
of these gaze points [36]. For a segment S of length n
comprised of a horizontal S, and a vertical S, EOG signal
component, the dispersion is calculated as

Dispersion(S) = max(Sy,) — min(Sy,) + max(S,) — min(S,).

Initially, all nonsaccadic segments are assumed to
contain a fixation. The algorithm then drops segments for
which the dispersion is above a maximum threshold th,; of
10,000 or if its duration is below a minimum threshold ¢ q,
of 200 ms. The value of thy; was derived as part of the CWT-
SD evaluation; that of th 4 approximates the typical average
fixation duration reported earlier.

A particular activity may require saccadic eye movements
of different distance and direction. For example, reading
involves a fast sequence of small saccades while scanning
each line of text, while large saccades are required to jump
back to the beginning of the next line. We opted to detect
saccades with two different amplitudes, “small” and “large.”
This requires two thresholds, thq,,,,, and th,,,,,, to divide the
range of possible values of C into three bands (see Fig. 3): no
saccade (—thsq,,, < C < ths,,,), small saccade (—thy,,, <
C < —thy,,, or thy,, <C <thy,,), and large saccade
(C < —thg,,, or C > thy,, ). Depending on its peak value,
each saccade is then assigned to one of these bands.

To evaluate the CWT-SD algorithm, we performed an
experiment with five participants—one female and four
males (age: 25-59 years, mean = 36.8, sd = 15.4). To cover
effects of differences in electrode placement and skin
contact, the experiment was performed on two different
days; in between days the participants took off the EOG
electrodes. A total of 20 recordings were made per
participant, 10 per day. Each experiment involved tracking
the participants’ eyes while they followed a sequence of
flashing dots on a computer screen. We used a fixed
sequence to simplify labeling of individual saccades. The
sequence was comprised of 10 eye movements consisting of
five horizontal and eight vertical saccades. This produced a
total of 591 horizontal and 855 vertical saccades.

By matching saccade events with the annotated ground
truth, we calculated true positives (1'Ps), false positives
(F'Ps), and false negatives (F'Ns), and from these, precision
(775p), recall (775), and the F1 score (2 *[% )
We then evaluated the F1 score across a sweep on the CWT-
SD threshold the = 1...50 (in 50 steps) separately for the
horizontal and vertical EOG signal components. Fig. 4
shows the mean F1 score over all five participants with
vertical lines indicating the standard deviation for selected
values of thy;. What can be seen from the figure is that

small

) = = = horizontal
3 1 vertical
2]
* 04
1
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1
v
0.2 1
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
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theg

Fig. 4. Evaluation of the CWT-SD algorithm for both EOG signal
components using a sweep of its main parameter, the threshold thg,.
The figure plots the mean F1 score over all five participants; vertical
lines show the standard deviation for selected ths,. Maximum F1 score
is indicated by a dashed line.

similar thresholds were used to achieve the top F1 scores of
about 0.94. It is interesting to note that the standard
deviation across all participants reaches a minimum for a
whole range of values around this maximum. This suggests
that thresholds that are also close to this point can be
selected that still achieve robust detection performance.

4.3.2 Blink Detection

For blink detection, we developed the Continuous Wavelet
Transform—aBlink Detection (CWT-BD) algorithm. Similarly to
CWT-SD, the algorithm uses a threshold thy; on the wavelet
coefficients to detect blinks in EOG,. In contrast to a saccade,
a blink is characterized by a sequence of two large peaks in
the coefficient vector directly following each other: one
positive, the other negative. The time between these peaks is
smaller than the minimum time between two successive
saccades rapidly performed in opposite direction. This is
because, typically, two saccades have at least a short fixation
in between them. For this reason, blinks can be detected by
applying a maximum threshold ¢h;4, on this time difference.

We evaluated our algorithm on EOG signals recorded in a
stationary setting from five participants looking at different
pictures (two females and three males, age: 25-29 years,
mean = 26.4, sd = 1.7). We labeled a total of 706 blinks by
visual inspection of the vertical EOG signal component. With
anaverage blink rate of 12 blinks per minute, this corresponds
toabout one hour of eye movement data. We evaluated CWT-
BD over sweeps of its two main parameters: thy, =
100...50,000 (in 500 steps) and thys, = 100...1,000 ms (in
10 steps).

The F1 score was calculated by matching blink events
with the annotated ground truth. Fig. 6 shows the F1 scores
for five selected values of thy, over all participants. CWT-
BD performs best with th;s, between 400 and 600 ms while
reaching top performance (F1 score: 0.94) using a thyy, of
500 ms. Time differences outside this range, as exemplarily
shown for 300 and 1,000 ms, are already subject to a
considerable drop in performance. This finding nicely
reflects the values for the average blink duration cited
earlier from the literature.
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Fig. 5. (a) Characters used to encode eye movements of different
direction and distance: dark gray indicates basic and light gray diagonal
directions. (b) Saccades detected in both EOG signal components and
mapped to the eye movement sequence of the jumping point stimulus.
Simultaneous saccades in both components are combined according to

their direction and amplitude (e.g., “I’ and “u” become “n,” and “R” and
“U” become “B”).

4.4 Analysis of Repetitive Eye Movement Patterns

Activities such as reading typically involve characteristic
sequences of several consecutive eye movements [6]. We
propose encoding eye movements by mapping saccades
with different direction and amplitude to a discrete,
character-based representation. Strings of these characters
are then collected in wordbooks that are analyzed to extract
sequence information on repetitive eye movement patterns.

4.4.1 Eye Movement Encoding

Our algorithm for eye movement encoding maps the
individual saccade information from both EOG components
onto a single representation comprised of 24 discrete
characters (see Fig. 5a). This produces a representation that
can be more efficiently processed and analyzed.

The algorithm takes the CWT-SD saccades from the
horizontal and vertical EOG signal components as its input.
It first checks for simultaneous saccades in both components
as these represent diagonal eye movements. Simultaneous
saccades are characterized by overlapping saccade segments
in the time domain. If no simultaneous saccades are detected,

------- 1000 ms

600 ms
—— 500 ms
400 ms
—-= 300 ms

F1 score

20 30 40 50
g [x 10%]

Fig. 6. Evaluation of the CWT-BD algorithm over a sweep of the blink
threshold th,,, for five different maximum time differences thy,,. The
figure plots the mean F1 score over all participants; vertical lines show
the standard deviation for selected th;,. Maximum F1 score is indicated
by a dashed line.

the saccade’s character is directly used to denote the eye
movement. If two saccades are detected, the algorithm
combines both according to the following scheme (see
Fig. 5b): The characters of two saccades with equally large
EOG signal amplitudes are merged to the character exactly in
between (e.g., “1” and “u” become “n,” “R” and “U” become
“B”).If simultaneous saccades differ by more than 50 percent
in EOG signal amplitude, their characters are merged to the
closest neighboring character (e.g., “1” and “U” become “O”).
This procedure encodes each eye movement into a distinct
character, thus, mapping saccades of both EOG signal
components into one eye movement sequence.

4.4.2 Wordbook Analysis

Based on the encoded eye movement sequence, we propose a
wordbook analysis to assess repetitive eye movement
patterns (see Fig. 7). An eye movement pattern is defined as
a string of [ successive characters. As an example with [ = 4,
the pattern “LrBd” translates to large left (L) — small right (r)
— large diagonal right (B) — small down (d). A sliding
window of length ! and a step size of one is used to scan the
eye movement sequence for these patterns. Each newly
found eye movement pattern is added to the corresponding
wordbook Wb;. For a pattern that is already included in
Wb, its occurrence count is increased by one.

4.5 Feature Extraction

We extract four groups of features based on the detected
saccades, fixations, blinks, and the wordbooks of eye
movement patterns. Table 1 details the naming scheme
used for all of these features. The features are calculated
using a sliding window (window size Wy, and step size Sy.)
on both EOG;, and EOG,. From a pilot study, we were able
to fix Wy, at 30 s and Sy, at 0.25 s.

Features calculated from saccadic eye movements make
up the largest proportion of extracted features. In total,
there are 62 such features comprising the mean, variance,
and maximum EOG signal amplitudes of saccades and the
normalized saccade rates. These are calculated for both
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eye movement sequence wordbook
—>

LuR 2

uURG 1

—»> RGL 1

1

GLu
:

Fig. 7. Example wordbook analysis for eye movement patterns of length
1 = 3. A sliding window scans a sequence of eye movements encoded
into characters for repetitive patterns. Newly found patterns are added to
the wordbook; otherwise, only the occurrence count (last column) is
increased by one.

EOGy, and EOGy, for small and large saccades, for saccades
in positive or negative direction, and for all possible
combinations of these.

We calculate five different features using fixations: the
mean and variance of the EOG signal amplitude within a
fixation,; the mean and the variance of fixation duration,
and the fixation rate over window Wr.,.

For blinks, we extract three features: blink rate and the
mean and variance of the blink duration.

We use four wordbooks. This allows us to account for all
possible eye movement patterns up to a length of four
(I =4), with each wordbook containing the type and
occurrence count of all patterns found. For each wordbook
we extract five features: the wordbook size, the maximum
occurrence count, the difference between the maximum and
minimum occurrence counts, and the variance and mean of
all occurrence counts.

4.6 Feature Selection and Classification

For feature selection, we chose a filter scheme over the
commonly used wrapper approaches because of the lower
computational costs and thus shorter runtime given the
large data set. We use minimum redundancy maximum
relevance feature selection for discrete variables [37], [38].
The mRMR algorithm selects a feature subset of arbitrary
size S that best characterizes the statistical properties of the
given target classes based on the ground truth labeling. In
contrast to other methods such as the F-test, mRMR also
considers relationship between features during the selec-
tion. Among the possible underlying statistical measures
described in the literature, mutual information was shown
to yield the most promising results and was thus selected in
this work. Our particular mRMR implementation combines
the measures of redundancy and relevance among classes
using the mutual information difference (MID).

For classification, we chose a linear support vector
machine. Our SVM implementation uses a fast sequential
dual method for dealing with multiple classes [39], [40].
This reduces training time considerably while retaining
recognition performance.

These two algorithms are combined into a hybrid feature
selection and classification method. In a first step, mRMR
ranks all available features (with S = 90). During classifica-
tion, the size of the feature set is then optimized with
respect to recognition accuracy by sweeping S.

TABLE 1
Naming Scheme for the Features Used in this Work
Group Features
saccade mean (mean), variance (var) or maximum (max)

(S-) EOG signal amplitudes (Amp) or rate (rate) of
small (S) or large (L), positive (P) or negative
(N) saccades in horizontal (Hor) or vertical (Ver)
direction

fixation mean (mean) and/or variance (var) of the hori-

(F-) zontal (Hor) or vertical (Ver) EOG signal ampli-
tude (Amp) within or duration (Duration) of a
fixation or rate of fixations

blink mean (mean) or variance (var) of the blink
(B-) duration or blink rate (rate)

wordbook wordbook size (size) or maximum (max), dif-
(W-) ference (diff) between maximum and minimum,

mean (mean) or variance (var) of all occurrence
counts (Count) in the wordbook of length (-1x)
For a particular feature, e.g., S-rateSPHor, the capital letter represents
the group—saccadic (S), blink (B), fixation (F), or wordbook (W)—and
the combination of abbreviations after the dash describes the particular
type of feature and the characteristics it covers.

5 EXPERIMENT

We designed a study to establish the feasibility of EAR in a
real-world setting. Our scenario involved five office-based
activities—copying a text, reading a printed paper, taking
handwritten notes, watching a video, and browsing the
Web—and periods during which participants took a rest (the
NULL class). We chose these activities for three reasons. First,
they are all commonly performed during a typical working
day. Second, they exhibit interesting eye movement patterns
that are both structurally diverse and have varying levels of
complexity. We believe they represent the much broader
range of activities observable in daily life. Finally, being able
to detect these activities using on-body sensors such as EOG
may enable novel attentive user interfaces that take into
account cognitive aspects of interaction such as user inter-
ruptibility or level of task engagement.

Originally, we recorded 10 participants, but two were
withdrawn due to poor signal quality: One participant had
strong pathologic nystagmus. Nystagmus is a form of
involuntary eye movement that is characterized by alternat-
ing smooth pursuit in one direction and saccadic movement
in the other direction. The horizontal EOG signal component
turned out to be severely affected by the nystagmus and no
reliable saccadic information could be extracted. For the
second participant, most probably due to bad electrode
placement, the EOG signal was completely distorted.

All of the remaining eight participants (two females and
six males), aged between 23 and 31 years (mean = 26.1,
sd = 2.4) were daily computer users, reporting 6 to 14 hours
of use per day (mean = 9.5, sd = 2.7). They were asked to
follow two continuous sequences, each composed of five
different, randomly ordered activities, and a period of rest
(see Fig. 8b). For these, no activity was required of the
participants but they were asked not to engage in any of the
other activities. Each activity (including NULL) lasted about
five minutes, resulting in a total data set of about eight hours.



748

(a)

video NULL

| FBTT

(b)

Fig. 8. (a) Electrode placement for EOG data collection (h: horizontal,
v: vertical, and r: reference). (b) Continuous sequence of five typical
office activities: copying a text, reading a printed paper, taking
handwritten notes, watching a video, browsing the Web, and periods
of no specific activity (the NULL class).

copy read write browse

|
e

5.1 Apparatus

We used a commercial EOG device, the Mobi8, from
Twente Medical Systems International (TMSI). It was worn
on a belt around each participant’s waist and recorded a
four-channel EOG at a sampling rate of 128 Hz. Participants
were observed by an assistant who annotated activity
changes with a wireless remote control. Data recording and
synchronization were handled by the Context Recognition
Network Toolbox [41].

EOG signals were picked up using an array of five 24 mm
Ag/AgCl wet electrodes from Tyco Healthcare placed
around the right eye. The horizontal signal was collected
using one electrode on the nose and another directly across
from this on the edge of the right eye socket. The vertical
signal was collected using one electrode above the right
eyebrow and another on the lower edge of the right eye
socket. The fifth electrode, the signal reference, was placed
in the middle of the forehead. Five participants (two females
and three males) wore spectacles during the experiment. For
these participants, the nose electrode was moved to the side
of the left eye to avoid interference with the spectacles (see
Fig. 8a).

The experiment was carried out in an office during
regular working hours. Participants were seated in front of
two adjacent 17 inch flat screens with a resolution of 1,280 x
1,024 pixels on which a browser, a video player, a word
processor, and text for copying were on-screen and ready
for use. Free movement of the head and upper body was
possible throughout the experiment.
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5.2 Procedure

For the text copying task, the original document was shown
on the right screen with the word processor on the left
screen. Participants could copy the text in different ways.
Some touch typed and only checked for errors in the text
from time to time; others continuously switched attention
between the screens or the keyboard while typing. Because
the screens were more than half a meter from the
participants’ faces, the video was shown full screen to elicit
more distinct eye movements. For the browsing task, no
constraints were imposed concerning the type of Website or
the manner of interaction. For the reading and writing tasks,
a book (12 pt, one column with pictures) and a pad with a
pen were provided.

5.3 Parameter Selection and Evaluation

The same saccade and blink detection parameters were used
throughout the evaluation: thy; = 23,438, thy;, = 390 ms,
thsdy,,. = 13,750, and th,,,, = 2,000. The selection of th
was based on the typical length of a short scan saccade
during reading, and thy,, on the length of a typical
newline movement.

Classification and feature selection were evaluated using
a leave-one-person-out scheme: We combined the data sets
of all but one participant and used this for training; testing
was done using both data sets of the remaining participant.
This was repeated for each participant. The resulting train
and test sets were standardized to have zero mean and a
standard deviation of one. Feature selection was always
performed solely on the training set. The two main
parameters of the SVM algorithm, the cost C' and the
tolerance of termination criterion ¢, were fixed to C' = 1 and
€ = 0.1. For each leave-one-person-out iteration, the predic-
tion vector returned by the SVM classifier was smoothed
using a sliding majority window. Its main parameter, the
window size W,,, was obtained using a parameter sweep
and fixed at 2.4 s.

small

6 RESuULTS
6.1 Classification Performance

SVM classification was scored using a frame-by-frame
comparison with the annotated ground truth. For specific
results on each participant or on each activity, class-relative
precision and recall were used.

Table 2 shows the average precision and recall, and the
corresponding number of features selected for each
participant. The number of features used varied from only
nine features (P8) up to 81 features (P1). The mean
performance over all participants was 76.1 percent preci-
sion and 70.5 percent recall. P4 reported the worst result,
with both precision and recall below 50 percent. In contrast,
P7 achieved the best result, indicated by recognition

TABLE 2
Precision, Recall, and the Corresponding Number of Features Selected by the Hybrid mRMR/SVM Method for Each Participant
Pl(m) P2(m) P3(m) P4(m) P5(m) P6(f) P7(f) P8 (m) Mean
Precision 76.6 88.3 83.0 46.6 59.5 89.2 93.0 729 76.1
Recall 69.4 77.8 72.2 479 46.0 86.9 81.9 81.9 70.5
# Features 81 46 64 59 50 69 21 9 50

The participants’ gender is given in brackets; best and worst case results are indicated in bold.
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Fig. 9. Precision and recall for each activity and participant. Mean
performance (P1 to P8) is marked by a star.

performance in the 80s and 90s and using a moderate-sized
feature set.

Fig. 9 plots the classification results in terms of precision
and recall for each activity and participant. The best results
approach the top right corner, while worst results are close
to the lower left. For most activities, precision and recall fall
within the top right corner. Recognition of reading and
copying, however, completely fails for P4, and browsing
also shows noticeably lower precision. Similar but less
strong characteristics apply for the reading, writing, and
browsing task for P5.

The summed confusion matrix from all participants,
normalized across ground truth rows, is given in Fig. 10.
Correct recognition is shown on the diagonal; substitution
errors are off-diagonal. The largest between-class substitu-
tion errors not involving NULL fall between 12 and
13 percent of their class times. Most of these errors involve
browsing that is falsely returned during 13 percent each of

~
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1
NULL 0.03 0.03 0.01 0.06 0.04
0.8
read | 0.07 0.13 0.12 0.01
2
S browse | 0.16 0.12 0.04 0.02 0.6
El
g wie 006 001 0.06 | 104
video | 0.15 0.01 0.01
0.2
copy | 0.12 0.01 0.13 0.06 0.01
0

NULL read browse write video

Predicted class

copy

Fig. 10. Summed confusion matrix from all participants, normalized
across ground truth rows.

read, write, and copy activities. A similar amount is
substituted by read during browse time.

6.2 Eye Movement Features

We first analyzed how mRMR ranked the features on each
of the eight leave-one-person-out training sets. The rank of a
feature is the position at which mRMR selected it within a
set. The position corresponds to the importance with which
mRMR assesses the feature’s ability to discriminate between
classes in combination with the features ranked before it.
Fig. 11 shows the top 15 features according to the median
rank over all sets (see Table 1 for a description of the type
and name of the features). Each vertical bar represents the
spread of mRMR ranks: For each feature, there is one rank
per training set. The most useful features are those found
with the highest rank (close to one) for most training sets,
indicated by shorter bars. Some features are not always
included in the final result (e.g., feature 63 only appears in
five sets). Equally, a useful feature that is ranked lowly by
mRMR might be the one that improves a classification (e.g.,

40+ A
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304 21 5 12: S-meanAmpSNHor
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Fig. 11. The top 15 features selected by mRMR for all eight training sets. The X-axis shows feature number and group; the key on the right shows the
corresponding feature names as described in Table 1; the Y-axis shows the rank (top = 1). For each feature, the bars show: the total number of
training sets for which the feature was chosen (bold number at the top), the rank of the feature within each set (dots, with a number representing the
set count), and the median rank over all sets (black star). For example, a useful feature is 47 (S)—a saccadic feature selected for all sets, in seven of
which it is ranked one or two; less useful is 63 (B)—a blink feature used in only five sets and ranked between 4 and 29.
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TABLE 3
The Top Five Features Selected by mRMR for Each Activity over All Training Sets (See Table 1 for Details on Feature Names)
rank read browse write video copy
1 W-maxCount-12 S-rateSPHor W-varCount-14 F-meanVarVertAmp S-varAmp

W-varCount-14

W-varCount-13

W-varCount-12
W-meanCount-11

W-meanCount-14
W-varCount-12
F-varDuration

Ul = W N

B-rate

F-meanVarVertAmp
F-varDuration
F-meanDuration
S-rateLPVer

F-meanVarHorAmp  S-meanAmpSNHor
S-meanAmpLPHor
S-rateS

F-meanVarHorAmp

B-rate
S-varAmpNHor
S-meanAmpSPHor

feature 68 is spread between rank five and 26, but is
included in all eight sets).

This analysis reveals that the top three features, as
judged by high ranks for all sets, are all based on
horizontal saccades: 47 (S-rateSPHor), 56 (S-maxAmpPHor),
and 10 (S-meanAmpSHor). Feature 68 (F-rate) is used in all
sets, seven of which rank it highly. Feature 63 (B-rate) is
selected for five out of the eight sets, only one of which
gives it a high rank. Wordbook features 77 (W-maxCount-
I12) and 85 (W-maxCount-13) are not used in one of the sets,
but they are highly ranked by the other seven.

We performed an additional study into the effect of
optimizing mRMR for each activity class. We combined all
training sets and performed a one-versus-many mRMR for
each non-NULL activity. The top five features selected
during this evaluation are shown in Table 3. For example,
the table reveals that reading and browsing can be
described using wordbook features. Writing requires addi-
tional fixation features. Watching video is characterized by
a mixture of fixation and saccade features for all directions
and—as reading—the blink rate, while copying involves
mainly horizontal saccade features.

7 DiscussION

7.1 Robustness across Participants

The developed algorithms for detecting saccades and blinks
in EOG signals proved robust and achieved F1 scores of up
to 0.94 across several people (see Figs. 4 and 6). For the
experimental evaluation, the parameters of both algorithms
were fixed to values common for all participants; the same
applies to the parameters of the feature selection and
classification algorithms. Under these conditions, despite
person-independent training, six out of the eight partici-
pants returned best average precision and recall values of
between 69 and 93 percent.

Two participants, however, returned results that were
lower than 50 percent. On closer inspection of the raw eye
movement data, it turned out that for both the EOG, signal
quality was poor. Changes in signal amplitude for saccades
and blinks—upon which feature extraction and thus
recognition performance directly depend—were not distinc-
tive enough to be reliably detected. As was found in an earlier
study [6], dry skin or poor electrode placement are the most
likely culprits. Still, the achieved recognition performance is
promising for eye movement analysis to be implemented in
real-world applications, for example, as part of a reading
assistant, or for monitoring workload to assess the risk of
burnout syndrome. For such applications, recognition per-
formance may be further increased by combining eye move-
ment analysis with additional sensing modalities.

7.2 Results for Each Activity

As might have been expected, reading is detected with
comparable accuracy to that reported earlier [6]. However,
the methods used are quite different. The string matching
approach applied in the earlier study makes use of a specific
“reading pattern.” That approach is not suited for activities
involving less homogeneous eye movement patterns. For
example, one would not expect to find a similarly unique
pattern for browsing or watching a video as there exists for
reading. This is because eye movements show much more
variability during these activities as they are driven by an
ever-changing stimulus. As shown here, the feature-based
approach is much more flexible and scales better with the
number and type of activities that are to be recognized.

Accordingly, we are now able to recognize four
additional activities—Web browsing, writing on paper,
watching video, and copying text—with almost, or above,
70 percent precision and 70 percent recall. Particularly
impressive is video, with an average precision of 88 percent
and recall of 80 percent. This is indicative of a task where
the user might be concentrated on a relatively small field of
view (like reading), but follows a typically unstructured
path (unlike reading). Similar examples outside the current
study might include interacting with a graphical user
interface or watching television at home. Writing is similar
to reading in that the eyes follow a structured path, albeit
at a slower rate. Writing involves more eye “distractions”—
when the person looks up to think for example. Browsing
is recognized less well over all participants (average
precision 79 percent and recall 63 percent)—but with a
large spread between people. A likely reason for this is that
it is not only unstructured, but also it involves a variety of
subactivities—including reading—that may need to be
modeled. The copy activity, with an average precision of
76 percent and a recall of 66 percent, is representative of
activities with a small field of view that include regular
shifts in attention (in this case, to another screen). A
comparable activity outside the chosen office scenario
might be driving, where the eyes are on the road ahead
with occasional checks to the side mirrors. Finally, the
NULL class returns a high recall of 81 percent. However,
there are many false returns (activity false negatives) for
half of the participants, resulting in a precision of only
66 percent.

Three of these activities—writing, copying, and browsing
—all include sections of reading. From quick checks over
what has been written or copied to longer perusals of online
text, reading is a pervasive subactivity in this scenario. This is
confirmed by the relatively high rate of confusion errors
involving reading, as shown in Fig. 10.
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7.3 Feature Groups

The feature groups selected by mRMR provide a snapshot
of the types of eye movement features useful for activity
recognition.

Features from three of the four proposed groups—
saccade, fixation, and wordbook—were all prominently
represented in our study. The fact that each group covers
complementary aspects of eye movement is promising for
the general use of these features for other EAR problems.
Note that no one feature type performs well alone. The best
results were obtained using a mixture of different features.
Among these, the fixation rate was always selected. This
result is akin to that of Canosa, who found that both fixation
duration and saccade amplitude are strong indicators of
certain activities [42].

Features derived from blinks are less represented in the
top ranks. One explanation for this is that for the short activity
duration of only five minutes, the participants did not
become fully engaged in the tasks, and were thus less likely
to show the characteristic blink rate variations suggested by
Palombea et al. [43]. These features may be found to be more
discriminative for longer duration activities. Coupled with
the ease by which they were extracted, we believe blink
features are still promising for future work.

7.4 Features for Each Activity Class

The analysis of the most important features for each activity
class is particularly revealing.

Reading is a regular pattern characterized by a specific
sequence of saccades and short fixations of similar duration.
Consequently, mRMR chose mostly wordbook features
describing eye movement sequencing in its top ranks, as
well as a feature describing the fixation duration variance.
The fifth feature, the blink rate, reflects that, for reading as
an activity of high visual engagement, people tend to blink
less [43].

Browsing is structurally diverse and—depending on the
Website being viewed—may be comprised of different
activities, e.g., watching a video, typing, or looking at a
picture. In addition to the small, horizontal saccade rate,
mRMR also selected several workbook features of varying
lengths. This is probably due to our participants” browsing
activities containing mostly sequences of variable length
reading such as scanning headlines or searching for a
product in a list.

Writing is similar to reading, but requires greater fixation
duration (it takes longer to write a word than to read it) and
greater variance. mRMR correspondingly selected average
fixation duration and its variance as well as a wordbook
feature. However, writing is also characterized by short
thinking pauses, during which people invariably look up.
This corresponds extremely well to the choice of the fixation
feature that captures variance in vertical position.

Watching a video is a highly unstructured activity, but is
carried out within a narrow field of view. The lack of
wordbook features reflects this, as does the mixed selection
of features based on all three types: variance of both
horizontal and vertical fixation positions, small positive and
negative saccadic movements, and blink rate. The use of
blink rate likely reflects the tendency toward blink inhibi-
tion when performing an engaging yet sedentary task [43].

Finally, copying involves many back and forth saccades
between screens. mRMR reflects this by choosing a mixture

of small and large horizontal saccade features, as well as
variance in horizontal fixation positions.

These results suggest that for tasks that involve a known
set of specific activity classes, recognition can be optimized
by only choosing features known to best describe these
classes. It remains to be investigated how well such
prototype features discriminate between activity classes
with very similar characteristics.

7.5 Activity Segmentation Using Eye Movements

Segmentation—the task of spotting individual activity
instances in continuous data—remains an open challenge
in activity recognition. We found that eye movements can
be used for activity segmentation on different levels
depending on the timescale of the activities. The lowest
level of segmentation is that of individual saccades that
define eye movements in different directions—"left,”
“right,” and so on. An example for this is the end-of-line
“carriage return” eye movement performed during reading.
The next level includes more complex activities that involve
sequences composed of a small number of saccades. For
these activities, the wordbook analysis proposed in this
work may prove suitable. In earlier work, such short eye
movement patterns, so-called eye gestures, were success-
fully used for eye-based human-computer interaction [44].
At the highest level, activities are characterized by complex
combinations of eye movement sequences of potentially
arbitrary length. Unless wordbooks are used that span these
long sequences, dynamic modeling of activities is required.
For this, it would be interesting to investigate methods such
as hidden Markov models (HMM), Conditional Random
Fields (CRF), or an approach based on eye movement
grammars. These methods would allow us to model eye
movement patterns at different hierarchical levels, and to
spot composite activities from large streams of eye move-
ment data more easily.

7.6 Limitations

One limitation of the current work is that the experimental
scenario considered only a handful of activities. It is
important to note, however, that the recognition architec-
ture and feature set were developed independently of these
activities. In addition, the method is not limited to EOG. All
features can be extracted equally well from eye movement
data recorded using a video-based eye tracker. This
suggests that our approach is applicable to other activities,
settings, and eye tracking techniques.

The study also reveals some of the complexity one might
face in using the eyes as a source of information on a person’s
activity. The ubiquity of the eyes’ involvement in everything
a person does means that it is challenging to annotate
precisely what is being “done” at any one time. It is also a
challenge to define a single identifiable activity. Reading is
perhaps one of the easiest to capture because of the intensity
of eye focus that is required and the well-defined paths that
the eyes follow. A task such as Web browsing is more
difficult because of the wide variety of different eye move-
ments involved. It is challenging, too, to separate relevant
eye movements from momentary distractions.

These problems may be solved, in part, by using video
and gaze tracking for annotation. Activities from the current
scenario could be redefined at a smaller timescale, breaking
browsing into smaller activities such as “use scroll bar,”



752

“read,” “look at image,” or “type.” This would also allow us
to investigate more complicated activities outside the office.
An alternative route is to study activities at larger timescales,
to perform situation analysis rather than recognition of
specific activities. Long-term eye movement features, e.g.,
the average eye movement velocity and blink rate over one
hour, might reveal whether a person is walking along an
empty or busy street, whether they are at their desk working,
or whether they are at home watching television. Annotation
will still be an issue, but one that maybe alleviated using
unsupervised or self-labeling methods [21], [45].

7.7 Considerations for Future Work

Additional eye movement characteristics that are potentially
useful for activity recognition—such as pupil dilation,
microsaccades, vestibulo-ocular reflex, or smooth pursuit
movements—were not used here because of the difficulty in
measuring them with EOG. These characteristics are still
worth investigating in the future as they may carry informa-
tion that complements that available in the current work.

Eye movements also reveal information on cognitive
processes of visual perception, such as visual memory,
learning, or attention. If it were possible to infer these
processes from eye movements, this may lead to cognition-
aware systems that are able to sense and adapt to a person’s
cognitive state [46].

8 CONCLUSION

This work reveals two main findings for activity recognition
using eye movement analysis. First, we show that eye
movements alone, i.e., without any information on gaze,
can be used to successfully recognize five office activities.
We argue that the developed methodology can be extended
to other activities. Second, good recognition results were
achieved using a mixture of features based on the
fundamentals of eye movements. Sequence information on
eye movement patterns, in the form of a wordbook analysis,
also proved useful and can be extended to capture
additional statistical properties. Different recognition tasks
will likely require different combinations of these features.

The importance of these findings lies in their significance
for eye movement analysis to become a general tool for the
automatic recognition of human activity.
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