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Multimodal Recognition of Reading Activity
in Transit Using Body-Worn Sensors
ANDREAS BULLING, University of Cambridge and Lancaster University
JAMIE A. WARD and HANS GELLERSEN, Lancaster University

Reading is one of the most well-studied visual activities. Vision research traditionally focuses on understanding the percep-
tual and cognitive processes involved in reading. In this work we recognize reading activity by jointly analyzing eye and head
movements of people in an everyday environment. Eye movements are recorded using an electrooculography (EOG) system;
body movements using body-worn inertial measurement units. We compare two approaches for continuous recognition of read-
ing: String matching (STR) that explicitly models the characteristic horizontal saccades during reading, and a support vector
machine (SVM) that relies on 90 eye movement features extracted from the eye movement data. We evaluate both methods
in a study performed with eight participants reading while sitting at a desk, standing, walking indoors and outdoors, and rid-
ing a tram. We introduce a method to segment reading activity by exploiting the sensorimotor coordination of eye and head
movements during reading. Using person-independent training, we obtain an average precision for recognizing reading of 88.9%
(recall 72.3%) using STR and of 87.7% (recall 87.9%) using SVM over all participants. We show that the proposed segmenta-
tion scheme improves the performance of recognizing reading events by more than 24%. Our work demonstrates that the joint
analysis of eye and body movements is beneficial for reading recognition and opens up discussion on the wider applicability of a
multimodal recognition approach to other visual and physical activities.
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1. INTRODUCTION

Machine recognition of human physical activities has a long history in computer vision research (see
[Mitra and Acharya 2007; Turaga et al. 2008] for surveys). The growing use of body-worn sensors, in
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particular in ubiquitous computing and human-computer interaction, has paved the way for a new
class of activity recognition systems [Davies et al. 2008]. Considerable advances in activity recognition
were achieved by using modalities such as body movement and posture [Najafi et al. 2003], sound
[Ward et al. 2006], or interactions between people [Kern et al. 2007].

In earlier work we introduced eye movements as a new modality for activity recognition [Bulling
et al. 2011]. The movement patterns our eyes perform as we carry out specific activities reveal much
about the activities themselves - independently of what we are looking at. This includes information on
physical activities, such as driving a car [Ji and Yang 2002]; cognitive processes of visual perception,
such as attention [Liversedge and Findlay 2000]; or saliency determination [Henderson 2003], and
information on visual tasks, such as reading.

In human vision research, eye movements during reading have been studied for over 30 years (see
Rayner [1998] for a review). A large number of studies have analyzed people’s visual behavior while
reading written text. Reading is a pervasive visual activity e.g., on computer screens at work, adver-
tisements and signs in public, or books read at home or while traveling. Therefore, information on a
person’s reading activities is a useful indicator of his daily situation [Logan et al. 2007]. A computer
interface capable of detecting reading activity could comprise the users’ current level of interruptibility
or task engagement, provide assistance to users with reading disabilities by automatically magnifying
or explaining words or context in the text [Sibert et al. 2000; Maglio et al. 2000; Biedert et al. 2010],
or infer and adapt to the users’ intention [Young 2010].

1.1 Paper Scope and Contributions

We previously investigated reading recognition from horizontal eye movements using string matching
and hidden markov models [Bulling et al. 2008]. The current work expands on this by demonstrating
the feasibility of recognizing reading activity in different daily situations using three different types
of eye and head movements. To leverage the information provided by these modalities, we introduce a
flexible feature-based method for reading recognition, as well as a head-based segmentation to improve
recognition performance. Using this methodology, we provide an in-depth analysis and performance
evaluation of multimodal reading recognition. The specific contributions are (1) a wearable sensing
approach to capture eye and head movements as a basis for reading recognition; (2) the implementation
and detailed comparison of two methods for continuous recognition of reading based on string matching
(STR) and a support vector machine (SVM); and (3) a new method for segmenting reading activity using
information derived from head movements.

1.2 Article Organization

We first survey related work and introduce EOG as well as the main eye movement types that we
identify as useful for reading recognition. We describe the algorithms developed for removing noise and
baseline drift from EOG signals and for detecting three different types of eye movements: saccades,
fixations, and blinks. We then introduce the classification algorithms and the features extracted from
these eye movements. Finally, we present and discuss the results of a user study on reading recognition
involving participants to read text while sitting at a desk, standing, walking indoors and outdoors, and
riding a tram.

2. RELATED WORK

2.1 Mobile Eye Tracking

Developing sensors to track eye movements in daily life is still an active topic of research. Mobile set-
tings call for highly miniaturized, low-power eye trackers with real-time processing capabilities. These
requirements are increasingly addressed by portable video-based eye trackers, such as the commercial
ACM Transactions on Applied Perception, Vol. 9, No. 1, Article 2, Publication date: March 2012.
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Mobile Eye system by Applied Science Laboratories (ASL) or the iView X HED by SensoMotoric Instru-
ments (SMI). However, these systems require bulky headgear and additional equipment such as digital
video recorders or laptops to store and process the video streams. Due to the demanding video process-
ing, state-of-the-art video-based eye trackers are also limited to a couple of hours of recording time.

Electrooculography (EOG)—the measurement technique used in this work—is an inexpensive
method for mobile eye movement recordings; it is computationally lightweight and can be implemented
using on-body sensors [Bulling et al. 2009]. These characteristics are crucial with a view to long-term
eye movement recordings in daily life settings. For EOG to be truly unobtrusive, particularly in daily
life settings, the design of robust electrode configurations is critical. Manabe et al. proposed the idea of
an EOG gaze detector using an electrode array mounted on ordinary headphones [Manabe and Fuku-
moto 2006]. While this placement might reduce the problem of obtrusiveness, it raises two other issues,
namely, low signal-noise ratio (SNR) and poor separation of horizontal and vertical EOG signal com-
ponents. In another work, Vehkaoja et al. made electrodes from conducting fibers and sewed them into
a head cap [Vehkaoja et al. 2005]. As yet, however, the device is still to be evaluated in operation. In
earlier work, we introduced the wearable EOG goggles, a lightweight eye tracker based on EOG and
integrated into ordinary security goggles [Bulling et al. 2009]. The device uses dry electrodes, offers
real-time EOG signal processing and adaptive signal artifact removal, and allows for more than seven
hours of mobile eye movement recordings.

2.2 Electrooculography Applications

Eye movement characteristics such as saccades, fixations, and blinks, as well as deliberate movement
patterns detected in EOG signals, have already been used for hands-free operation of a static human-
computer [Ding et al. 2005] and human-robot [Chen and Newman 2004] interfaces. EOG-based in-
terfaces have also been developed for assistive robots [Wijesoma et al. 2005] or as a control for an
electric wheelchair [Barea et al. 2002]. Such systems are intended to be used by physically disabled
people who have extremely limited peripheral mobility but still retain eye-motor coordination. These
studies showed that EOG is a measurement technique that is inexpensive, easy to use, reliable, and
relatively unobtrusive when compared to head-worn cameras used in video-based eye trackers. While
these applications all used EOG as a direct control interface, our approach is to use EOG as a source
of information on a person’s activity.

2.3 Eye Movement Analysis

A growing number of researchers use video-based eye tracking to study visual behavior in natural
environments. This has led to important advances on our understanding of how the brain processes
tasks, and of the role that the visual system plays in this [Hayhoe and Ballard 2005]. Eye movement
analysis has a long history as a tool to investigate visual behavior. In an early study, Hacisalihzade
et al. used Markov processes to model visual fixations of observers recognizing an object [Hacisali-
hzade et al. 1992]. They transformed fixation sequences into character strings and used the string
edit distance to quantify the similarity of eye movements. Elhelw et al. used discrete time Markov
chains on sequences of temporal fixations to identify salient image features that affect the perception
of visual realism [Elhelw et al. 2008]. They found that fixations were able to uncover the features that
most attract an observer’s attention. Dempere-Marco et al. presented a method for training novices
in assessing tomography images [Dempere-Marco et al. 2002]. They modeled the assessment behavior
of domain experts based on the dynamics of their saccadic eye movements. Salvucci et al. evaluated
means for automated analysis of eye movements [Salvucci and Anderson 2001]. They described three
methods based on sequence-matching and hidden Markov models that interpreted eye movements
as accurately as human experts but in significantly less time. Canosa analyzed different tasks such
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as reading, counting, talking, sorting, and walking to determine the extent to which everyday tasks
performed in real-world environments affect visual perception [Canosa 2009]. She showed that these
tasks could be compared and distinguished from one another by using eye movement features such as
mean fixation duration or mean saccade amplitude.

All of these studies aimed to model visual behavior during specific tasks using well-known eye move-
ment characteristics. They explored the link between the task and eye movements, but did not recog-
nise the task or activity using this information.

2.4 Activity Recognition

In a recent work, Logan et al. aimed to recognize common activities in a real-world setting using a
large variety and number of environmental sensors such as wired reed switches, RFID tags, and infra-
red motion detectors [Logan et al. 2007]. They discovered that among the activities they investigated
reading was one of the most difficult activities to detect, and concluded that for covering all types of
physical activity in daily life, improved algorithms need to be developed.

Most previous attempts to recognize reading have been based on video-based eye trackers. With
the goal of building a more natural computer interface, Campbell et al. investigated on-screen read-
ing recognition using infra-red cameras to track eye movements [Campbell and Maglio 2001]. The
approach was participant-independent, robust against noise and had a reported accuracy of 100%.
However, the system required that each participant’s head was kept still by using a chin rest.

In a later work, Keat et al. proposed an improved algorithm to determine whether a user is engaged
in reading activity on a computer monitor [Keat et al. 2003]. Using an ordinary video camera placed
between the participant and monitor, 10 participants were asked to read an interesting text from a
list of preselected articles. The participants were explicitly asked to undertake other types of common
computer-related activities such as playing computer games or watching video clips during the course
of the experiment. Using user-dependent training, they achieved an average reading detection accu-
racy of 85.0% with a false alarm rate of 14.2%. However, to ensure correct detection of gaze direction,
participants were required to face the screen throughout the experiments.

Motivated by the goal of improving reading skills for people with reading disabilities, Sibert et al.
developed a system for remedial reading instruction [Sibert et al. 2000]. Based on visual scanning
patterns, the system used visually controlled auditory prompting to help the user with recognition and
pronunciation of words. Following the study, participants reported that the most obtrusive part of the
system was the video camera used to track eye movements.

In earlier work, we used eye movement analysis to recognize a set of common office activities in a
work environment: copying a text between two screens, reading a printed paper, taking hand-written
notes, watching a video, and browsing the web [Bulling et al. 2011]. We also included periods of rest
(the NULL class) during which the participants were asked not to engage in any of the other activities.
Using a SVM classifier and person-independent training, we obtained an average precision of 76.1%
and recall of 70.5% over all classes and participants.

All of these studies used eye movement analysis for activity recognition. The current work, however,
is the first to fuse information derived from eye movements with that from other modalities, in this
case head movements, to increase recognition performance.

3. SENSING AND SIGNAL PROCESSING

3.1 Electrooculography

The eye can be modeled as a dipole with its positive pole at the cornea and its negative pole at the
retina. Assuming a stable corneo-retinal potential difference, the eye is the origin of a steady electric
ACM Transactions on Applied Perception, Vol. 9, No. 1, Article 2, Publication date: March 2012.
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EOG

Fig. 1. Denoised and baseline drift removed horizontal (EOGh) and vertical (EOGv) signal components. Examples of the three
main eye movement types detected in both signal components are marked in grey: saccades (S), fixations (F), and blinks (B).

potential field. The electrical signal that can be measured from this field is called the electrooculogram.
If the eye moves away from the center position, the retina approaches one electrode while the cornea
approaches the opposing one. This change in dipole orientation causes a change in the electric poten-
tial field, and thus the measured EOG signal amplitude. By analyzing these changes, eye movements
can be tracked. Using two pairs of skin electrodes placed at opposite sides of the eye and an additional
reference electrode on the forehead, two signal components (EOGh and EOGv), corresponding to two
movement components—a horizontal and a vertical—can be identified. EOG signal amplitudes typi-
cally range from 5 μV/degree to 20 μV/degree with an essential frequency content between 0 Hz and
30 Hz [Brown et al. 2006].

3.2 Eye Movement Types

To be able to use eye movement analysis for reading recognition, it is important to understand the
different types of eye movements. We identified three basic types that can be detected using EOG:
saccades, fixations, and blinks (see Figure 1).

3.2.1 Saccades. The eyes do not remain still when viewing a visual scene but move constantly to
build up a mental “map” from interesting parts of that scene. The main reason for this is that only a
small central region of the retina, the fovea, is able to perceive with high acuity. The fast movement
of the eyes is called a saccade. The duration of a saccade depends on the angular distance the eyes
travel during this movement: the so-called saccade amplitude. Typical characteristics of saccadic eye
movements are 20 degrees of visual angle for the amplitude, and 10 ms to 100 ms for the duration
[Duchowski 2007]. Eye movements during reading are characterised by repetitive saccades of different
amplitude in horizontal direction [Rayner 1998].

3.2.2 Fixations. Fixations are the stationary states of the eyes during which gaze is held upon
a specific location in the visual scene. Fixations are typically defined as the time between each two
saccades. The average fixation duration lies between 100 ms and 200 ms [Manor and Gordon 2003].

3.2.3 Blinks. The frontal part of the cornea is coated with the so-called precornial tear film. To
spread this fluid across the corneal surface, regular opening and closing of the eyelids, or blink-
ing, is required. The average blink rate varies between 12 and 19 blinks per minute while at rest
[Karson et al. 1981]; it is influenced by environmental factors such as relative humidity, temperature or
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brightness, but also by physical activity, cognitive workload, or fatigue [Schleicher et al. 2008]. The av-
erage blink duration lies between 100 ms and 400 ms [Schiffman 2001].

3.3 EOG Signal Processing

3.3.1 Noise and Baseline Drift Removal. EOGh and EOGv are first stripped of high frequency noise
using a median filter. For baseline drift removal, we then perform an approximated multilevel 1-D
wavelet decomposition at level nine using Daubechies wavelets on EOGh and EOGv. The reconstructed
decomposition coefficients give a baseline drift estimation. Subtracting this estimation from the orig-
inal signals yields the corrected signals with reduced drift offset (see Tinati and Mozaffary [2006] for
further details).

3.3.2 Saccade Detection. For saccade detection we developed the continuous wavelet transform -
saccade detection (CWT-SD) algorithm. CWT-SD detects saccades by thresholding on the continuous 1-
D wavelet coefficient vector computed from the de-noised and baseline drift removed EOGh and EOGv.
Small and large saccades are distinguished using different thresholds; saccade direction is obtained
from the sign of the first derivative of the signal. To improve the algorithm’s robustness to differences
in EOG signal quality, an additional step removes all saccade candidates that do not comply to typical
physiological saccade characteristics described in the literature [Duchowski 2007].

3.3.3 Fixation Detection. Our algorithm for fixation detection exploits the fact that fixation points
tend to cluster together closely in time. Thus, by thresholding on the dispersion of these points, fixa-
tions can be detected. EOGh and EOGv are first divided into saccadic and nonsaccadic segments using
the output from CWT-SD. For each nonsaccadic segment, the algorithm then calculates the correspond-
ing dispersion and duration values. If the dispersion is below a maximum threshold, and the duration
above a minimum threshold, a fixation is detected (see Widdel [1984] for typical values).

3.3.4 Blink Detection. Similar to the saccade detection, the so-called continuous wavelet transform -
blink detection (CWT-BD) algorithm uses thresholding of wavelet coefficients to detect blinks in EOGv.
In contrast to saccades, a blink is characterized by a short sequence of two large peaks in the coeffi-
cient vector: one positive, the other negative. The time between these peaks is much smaller than for
saccades. Thus, blinks are distinguished from saccades by applying a maximum threshold on this time
difference.

4. METHODOLOGY

We first provide an overview of the classification algorithms used in this work. We then detail the
method developed for analyzing repetitive eye movement sequences, and the features used by the
SVM classifier. Finally, we detail the head-based segmentation and the methods used for evaluating
the classifiers’ performance.

4.1 Classification Algorithms

Figure 2 shows the two processing chains for STR and SVM. Input to both chains are the processed
EOG signals capturing the horizontal and vertical eye movement components. In the first stage, these
signals are processed to remove any artifacts that might hamper eye movement analysis. Only this
initial processing depends on the particular eye tracking technique used; all further stages are com-
pletely independent of the underlying type of eye movement data. In the second stage, for STR, hori-
zontal saccades are detected from the processed eye movement data, encoded into a saccade sequence,
and fed into the string matching classifier. For SVM, three eye movement types are detected from the
eye movement data: saccades, fixations, and blinks. The corresponding eye movement events returned
ACM Transactions on Applied Perception, Vol. 9, No. 1, Article 2, Publication date: March 2012.
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(a) (b)

Fig. 2. Eye-based reading recognition using string matching (a); a support vector machine classifier (b) with optional head-
based reading segmentation.

Table I. Qualitative Comparison of the Two Classifiers in this
Work (with respect to memory footprint, computational

complexity, for classifier training, and flexibility of application to
other activities)

String Matching Support Vector Machine
Memory footprint low high
Computational complexity low high
Classifier Training not required required
Flexibility specific generic

by the detection algorithms are the basis for extracting different eye movement features using a slid-
ing window. Finally, a hybrid method selects the most relevant of these features, and uses them for
classification.

Particularly in mobile settings, visual tasks such as reading require spatial and temporal coordina-
tion between movements of the eyes and other parts of the human body [Sailer et al. 2005; Pelz et al.
2001; Johansson et al. 2001]. It is therefore conceivable that the joint analysis of eye and body move-
ments is beneficial for reading recognition. Thus, in both processing chains, a segmentation stage that
segments reading activity based on head movements may precede the classification stage.

As the processing chains for STR and SVM differ, so do their characteristics in terms of memory
footprint, computational complexity, and applicability to other activities (see Table I for a qualitative
comparison). String matching has a low memory footprint as well as computational complexity and
does not require training prior to classification. In contrast, the SVM algorithm does not rely on a
specific reading template but uses a feature-based classification approach. This approach, while being
more flexible, has a considerably higher memory footprint as well as computational complexity and
requires classifier training.

4.1.1 String Matching. We first encode the direction and amplitude of saccades in EOGh into a
string consisting of four different characters: “L” for large saccades to the left; “R” for large saccades
to the right; “l” for small saccades to the left; and “r” for small saccades to the right (c.f., Figure 3).
During reading, small saccades correspond to jumps between words while large saccades are those
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Fig. 3. De-noised and baseline drift removed horizontal EOG reading signal and corresponding string encoding.

observed during an end of line “carriage return”. This encoded string is the basis for classification
using string matching. The matching is performed by moving a string template, representing a typical
reading instance, over the encoded string sequence, character-by-character. In each of these steps, the
algorithm calculates the Levenshtein distance between the template and the current string sequence.
The Levenshtein distance between two strings is given by the minimum number of operations needed
to transform one string into the other, where an operation is an insertion, a deletion, or a substitution
of a single character [Levenshtein 1966].

The algorithm then applies a threshold Ted on the Levenshtein distance vector to separate the two
classes “reading” and “not reading”. This threshold defines how tolerant the classification is towards
relative error in the edit distance. As the method does not yet adapt the string template to the signal
while calculating the distances, it is sensitive to fluctuations in the number of small saccades. This
results in a high number of false insertions. To counter this we slide a majority vote window Wstr over
the event-based classifier output to “smooth” the final result.

4.1.2 Support Vector Machine. We chose a linear support vector machine that yielded good per-
formance in an earlier study on eye-based activity recognition [Bulling et al. 2011]. Our particular
SVM implementation uses a fast sequential dual method for dealing with multiple classes [Cram-
mer and Singer 2003; Lin 2008]. This reduces training time considerably while retaining recognition
performance.

Analysis of Eye Movement Sequences. We first encode eye movements by mapping saccades with
different direction and amplitude to a character-based representation. Our algorithm takes the CWT-
SD saccades from EOGh and EOGv as its input. It then checks for simultaneous saccades in both
components, as these represent diagonal eye movements. Simultaneous saccades are characterized
by overlapping saccade segments in the time domain. If no simultaneous saccades are detected, the
saccade is directly encoded. If two saccades are detected, the algorithm maps them onto one of 24
discrete characters.

An eye movement sequence is defined as a string of l successive characters. As an example, with
l = 4, “LrBd” translates to large left (L) → small right (r) → large diagonal right (B) → small down (d).
To extract information on repetitive eye movement sequences, such strings are collected in wordbooks
using a sliding window of length l and a step size of one. Each newly found string is added to the
corresponding wordbook Wbl. For a string that is already included in Wbl, its occurrence count is
increased by one.
ACM Transactions on Applied Perception, Vol. 9, No. 1, Article 2, Publication date: March 2012.
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Table II. Summary of 90 Eye Movement Features in this Work
Group Features
saccade mean, variance and maximum EOG signal amplitudes within a saccade, rate of small and large, positive

and negative saccades in horizontal and vertical directions
fixation mean and variance of the horizontal and vertical EOG signal amplitude within a fixation, fixation

duration, fixation rate
blink mean and variance of the blink duration, blink rate
wordbook wordbook size, maximum and difference between maximum and minimum occurrence count, mean and

variance of all occurrence counts in the wordbook (all for different pattern lengths)

Feature Extraction. We extract four groups of features based on the detected saccades, fixations,
blinks, and the wordbooks. Table II details the naming scheme used for all of these features. The
features are calculated using a sliding window (window size W f e = 5s and step size Sf e = 0.25s) on
EOGh and EOGv.

Features calculated from saccadic eye movements make up the largest proportion of extracted fea-
tures. In total, there are 62 such features comprising the mean, variance and maximum EOG signal
amplitudes of saccades, and the normalised saccade rates. These are calculated for both EOGh and
EOGv; for small and large saccades; for saccades in positive or negative direction; and for all possible
combinations of these.

We calculate five different features using fixations: the mean and variance of the EOG signal am-
plitude within a fixation; the mean and the variance of fixation duration; and the fixation rate over
window W f e.

For blinks, we extract three features: blink rate, and the mean and variance of the blink duration.
We use four wordbooks. This allowed us to account for all possible eye movement patterns up to a

length of four (l = 4), with each wordbook containing the type and occurrence count of all patterns
found. For each wordbook we extract five features: the wordbook size, the maximum occurrence count,
the difference between the maximum and minimum occurrence counts, and the variance and mean of
all occurrence counts.

Feature Selection. For feature selection, we choose a filter scheme over the commonly used wrapper
approaches because of the lower computational costs and thus shorter runtime given the large dataset.
We use minimum redundancy maximum relevance feature selection (mRMR) for discrete variables
[Peng et al. 2005; Peng 2008]. The mRMR algorithm selects a feature subset of arbitrary size S that
best characterizes the statistical properties of the given target class based on the ground truth la-
beling. In this work, we fixed S to 90. In contrast to other methods such as the F-test, mRMR also
considers relationship between features during the selection. Among the possible underlying statisti-
cal measures described in the literature, mutual information was shown to yield the most promising
results, and thus was selected in this work.

4.2 Head-Based Segmentation

With a view to a later implementation on an embedded device with limited processing power, we de-
veloped a segmentation approach that only requires one single-axis head-mounted accelerometer. The
segmentation is based on two assumptions: (1) that reading only occurs while the participant’s head
is down; and (2) that up and down movements of the head can be reliably detected using the head-
mounted accelerometer.

We detect these head movements by thresholding on the x-component of the de-noised and mean
subtracted head acceleration signal (see white arrow in Figure 5). Time periods during which this
signal is equal or below a threshold Tsegd are interpreted as “head down” and the remaining time
periods as “head up”. This procedure splits the whole dataset into “head up” and “head down” segments.
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While this segmentation scheme is computationally lightweight and fast, it is also sensitive to arti-
facts in the acceleration signal. For example, strikes to the motion sensor may cause signal artifacts
that are similar to signal changes caused by a person moving his head. To counter these, we remove
“head down” segments that are shorter than a minimum time period Tsegt.

During classification, the output is initially assumed to be “not reading“ throughout. We then run
the head-based segmentation on the eye movement data and apply isolated classification on the ”head
down“ segments only.

5. EXPERIMENT

The experimental setup was designed with two main objectives in mind: (1) to record eye and head
movements in an unobtrusive manner in a real-world setting; and (2) to evaluate how well the reading
by people in transit can be recognized using these modalities. We defined a scenario of traveling to and
from work containing a semi-naturalistic set of reading activities. It involved participants reading text
while engaged in a sequence of activities such as sitting at a desk, walking along a corridor, walking
along a street, waiting at a tram stop, and riding a tram.

5.1 Apparatus

For EOG data acquisition we used a commercial system, the Mobi from Twente Medical Systems Inter-
national (TMSI), which was worn on a belt around each participant’s waist (see Figure 5). The device
is capable of recording a four-channel EOG with a joint sampling rate of 128Hz.

The data was collected using an array of five electrodes positioned around the right eye (see Figure 5).
The electrodes used were the 24mm Ag/AgCl wet ARBO type from Tyco Healthcare equipped with an
adhesive brim to stick to the skin. The horizontal signal was collected using one electrode on the nose
and another directly across from this on the edge of the eye socket. The vertical signal was collected
using one electrode above the eyebrow and another on the lower edge of the eye socket. The fifth
electrode, the signal reference, was placed away from the other electrodes in the middle of the forehead.

For motion tracking we used three MTx sensors from XSens Technologies. The sensors were posi-
tioned on top of each participant’s head and on the back of their hands (see Figure 5). Unfortunately,
the MTx system performed poorly using Bluetooth, and so we were forced to use a wired connection.
This was the only physical connection between the participant and assistant. Care was taken by the
assistant to ensure that the trailing wire did not interfere or distract the participant.

All recorded data was sent to a laptop in the backpack worn by the assistant. Data recording and
synchronization were handled using the context recognition network (CRN) toolbox [Bannach et al.
2008]. We made two extensions to the toolbox: the first was a reader to acquire the annotation from
the Wii remote controller; the second extension was a “heartbeat” component that provided audio feed-
back to the assistant on whether the toolbox was running and recording data, thus providing instant
notification of device failures. The “heartbeat” allowed the assistant to concentrate on labeling and
observing the participants rather than continually disturbing the procedure by checking the recording
status.

5.2 Procedure

Before the experiment participants were only informed about the measurement equipment–neither
the later use of the sensors nor how reading would be recognized were explained to them. Participants
were asked to follow two different sequences: A first calibration sequence involved walking around
a circular corridor for approximately two minutes while reading continuously. The second sequence
involved a walk and tram ride to and from work (see Figure 4). This sequence was repeated in three
runs. The first run was carried out as a baseline case without any reading task. This was both to
ACM Transactions on Applied Perception, Vol. 9, No. 1, Article 2, Publication date: March 2012.
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Fig. 4. Experimental procedure involving a sequence in reading activity while sitting at a desk, walking along a corridor,
walking along a street, waiting at a tram stop, and riding a tram. The figure also shows the corresponding horizontal (EOGh)
and vertical (EOGv) EOG signals as well as acceleration data from the head of one complete dataset.

accustom the participants to the route, but also to provide a reasonable amount of NULL data, which
contributed to the objective of obtaining a realistic dataset. In two subsequent runs the participants
were asked to read a text throughout. Between each run the participants rested for about five minutes.
The total experiment time for each participant was about one hour. At the end of each experiment, the
participants were asked on their experiences on the procedure in a questionnaire.

In contrast to a previous study [Campbell and Maglio 2001], we opted to allow a free choice on read-
ing material. Only two conditions were made: (1) that the material was text-only, that is, no pictures;
and (2) that participants only chose material they found interesting and long enough to provide up
to an hour’s worth of reading. Thus the type of text, its style (e.g., number of columns), as well as
page and font size could be chosen to each participant’s personal preference, and were in fact different
across participants. Our objective was to induce a state where readers were engrossed in the task for
the relatively long recording time, thus allowing us to gather realistic data without having to coerce
participants. A further benefit was that if participants were engrossed in the task, they would be less
likely to be distracted by other people.

We were able to collect data from eight participants (four female and four male), aged between 23
and 35 years. Originally there were 10 participants, but two had to be withdrawn due to recording
problems resulting in incomplete data. Most of the experiments were carried out in well-lit, fair to
cloudy conditions, with two exceptions: One of the male participants was recorded at night where we
had to rely on street lights while walking around outdoors. Another male was recorded in the rain
where an assistant had to hold an umbrella over the participant to protect the sensors and reading
material. However, as neither of the datasets showed a decrease in signal quality, both were used for
the analysis.

5.2.1 Annotation of Ground Truth. Participants were tailed by an assistant who annotated both
the participants’ activity (sitting, standing, walking) and whether they were reading. For this level
of detail (are the participants’ eyes on the page or not) the assistant had to monitor the participants
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Fig. 5. Experimental setup consisting of five EOG electrodes (h: horizontal, v: vertical, r: reference) and the Mobi (1). The
bottom figure shows the wireless Wii controler used for annotating the ground truth with three thumb-control buttons (2); the
reading trigger button (3); and a button for labeling special events (4). Also shown are the three XSens motion sensors on the
head and on the back of both hands (5a); and the XBus Master (5b). The x-direction of the head-mounted accelerometer is
indicated with a white arrow.

from a close proximity, but without being so close as to cause a distraction. For this purpose we used
a wireless Nintendo Wii remote controller (see Figure 5). Using the Wii’s thumb-control buttons “up,”
“down,” and “right,” the assistant could annotate the basic activities of standing, sitting, and walking.
In parallel, the trigger button was held down whenever the participants appeared to be reading and
released when they stopped. A fifth button was used to annotate special events of interest, such as
when the participants passed through a door and while entering or leaving the tram.

6. EVALUATION

6.1 Parameter Selection

6.1.1 Saccade Detection. To determine the threshold parameters of the CWT-SD algorithm, we
used a sweep on a manually cut subset of the data. On average, for all participants, this subset of data
contained 15 large reading saccades plus noise and artifacts caused by interrupting eye movements.
For each threshold, we counted the number of large saccades that were detected and calculated the
relative error ( T otal−Detected

T otal ). Based on this sweep, we chose the large saccade threshold at T L
sac = 7000.

Due to the difficulties in manually segmenting samples of small saccades, we approximated the small
threshold T s

sac = 1500.

6.1.2 String Matching and Support Vector Machine. The string matching parameters were evalu-
ated across a sweep of the majority vote window length Wstr, the distance threshold Ted, and different
template lengths. Based on this sweep, we chose Wstr = 30, Ted = 3, and template “Lrrr” for all
participants.

The two main parameters of the SVM algorithm, the cost C and the tolerance of termination criterion
ε, were fixed to C = 1 and ε = 0.1.
ACM Transactions on Applied Perception, Vol. 9, No. 1, Article 2, Publication date: March 2012.
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(a) (b)

(c) (d)

Fig. 6. Example time- and event-based errors in continuous, multimodal recognition of reading indicated by mismatches be-
tween ground truth, head-based segmentation, and recognition output. (a) Overfill errors introduced by head-based segmenta-
tion (O) and deletion due to misclassified reading segment (D); (b) correctly classified ground truth segment (C) and deletion
introduced by segmentation (D); (c) fragmented only (F) and fragmented and merged (FM) ground truth segments and corre-
sponding fragmenting (F’), as well as fragmenting and merging (FM’) outputs; (d) insertion (I’) and three ground truth segments
(M) merged into a single reading output (M’).

6.1.3 Head-Based Segmentation. To determine the parameters of the head-based segmentation,
we swept Tsegd = 0.001. . .0.75 (in 750 steps) and Tsegt = 0.25s, 0.5s, 0.75s, 1s, 2s, 3s, 4s, 5s. We then
chose those parameters that minimized the sum of deletions (D) and insertions (I) minus the number
of correctly classified ground truth segments (C, see next paragraph for a description) according to
Eq. (1).

min
D,I,C∈N0

(D + I − C). (1)

Based on this analysis, we set Tsegd = 0.64 and Tsegt = 1s.

6.2 Comparison of Classification Algorithms

Classification and feature selection were evaluated using a leave-one-person-out scheme: we combined
the datasets of all but one participant and used this for training; testing was done using the datasets
of the remaining participant. This was repeated for each participant. The resulting train and test sets
were standardized to have zero mean and a standard deviation of one. Feature selection was always
performed solely on the training set.

We first investigated the robustness of reading recognition with head-based segmentation across
participants. We evaluated the performance of both classifiers with respect to the time and event
errors that occur in continuous recognition of reading (see Figure 6 for examples). To this end, we first
divided the recognition output and the ground truth into segments, that is, contiguous sequences of
same class samples. For time-based performance evaluation we then calculated performance measures
using a direct timewise (sample-by-sample) comparison of the ground truth with the classifier output.
For event-based performance evaluation we interpreted each segment as a reading activity event and
compared ground truth events with recognition output events to calculate performance measures. For
a fair comparison with STR, we also investigated the case of only using the horizontal eye movement
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Fig. 7. Error division diagrams (EDD) for string matching (STR) as well as support vector machine with head-based segmen-
tation using both eye movement components (SVM), only using the horizontal component (SVM hor), and both components but
without head-based segmentation (SVM w/o). The EDDs show the proportion of the total dataset comprising true positives (TP),
true negatives (TN), overfill (O), underfill (U), merge (M), and fragmentation (F) errors; insertion (I) and deletion (D) errors
form the serious error level, SEL (see Figure 6 for a description of these error classes). Results are averaged over all participants
using person-independent parameters.

component (two horizontal electrodes plus reference) for SVM. In this case, only 28 saccade features
could be extracted from the horizontal EOG signal and used for classification.

The error division diagrams (EDD) in Figure 7 provide a detailed breakdown of the time-based
recognition performance for both classifiers averaged over all participants. An EDD summarizes the
typical time errors that occur in continuous recognition systems. Specifically, there are three classes of
error that we consider in addition to the true negative (TN) and true positive (TP) times (see Figure 6).
Details on how these error classes are derived is outside the scope of the current work, but can be
found in Ward et al. [2011].

Serious errors. Insertions (I) describe when a reading segment is detected, but there is none in the
ground truth. Deletions (D) are failures to detect a reading segment. Taken together, both errors
are called the serious error level, SEL.
Fragmentation and merge. Fragmentation errors (F) describe when a reading segment in the
ground truth corresponds to several segments in the recognition system output. Merge (M) is the
opposite: several ground truth reading segments are combined into one segment. Both errors are
serious only if counts of reading segments are to be taken (e.g., as part of a statistical analysis)
Timing errors. Overfill errors (O) ocur when a segment in the system output extends into regions
of NULL. The opposite of overfill is underfill (U), in this case the segment recognized by the system
fails to “cover” parts of the ground truth segment. These errors are typically not considered serious,
as they typically caused by slightly offset labeling or delays in the recognition system.

Using this breakdown, Figure 7 shows that SVM performs best with an overall time-based recogni-
tion performance of 87.7% precision (recall 87.9%) and a SEL of 4.8%. The largest sources of error are
overfills and underfills (5.3%), as well as deletions and insertions, each accounting for 2.4% of the to-
tal experiment time. Only the use of the horizontal eye-movement component reduces the recognition
performance to 85.4% precision (recall 88.2%) and a SEL of 5.7%. STR yields a slightly higher preci-
sion of 88.9%, but a recall of only 72.3% and a SEL of 9.2% (caused only by deletions). The reduced
performance is mainly caused by a drop in TP to 34.2% and an increase in overfill and underfill errors.
ACM Transactions on Applied Perception, Vol. 9, No. 1, Article 2, Publication date: March 2012.
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(a)

(b)

(c)

(d)

Fig. 8. Event analysis diagram (EAD) for string matching (a), as well as a support vector machine with head-based segmen-
tation using both eye movement components (b); only using the horizontal component (c); and both components but without
head-based segmentation (d). Results are averaged over all participants using person-independent parameters. The EADs show
counts of deleted (D), fragmented (F), fragmented and merged (FM), merged (M), and correct (C) events as a proportion of the
total ground truth event count; and C, M’, FM’, F’, and insertions (I’) as a proportion of the total recognition output event count
(see Figure 6 for a description of these error classes).

The event analysis diagram (EAD) in Figure 8 shows that SVM also outperforms STR in terms of
event-based reading recognition performance. An EAD summarizes the typical event errors that occur
in continuous recognition systems. Specifically, we distinguish between nine possible outcomes when
ground truth events are compared against recognition output events (see Figure 6): correct (C), when
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Table III. Selected Event Error Counts for SVM with Head-Based Segmentation for
Each Participant. (Results referred to in the text are marked in bold and italic. The

table also shows the participants’ gender (f: female, m: male); the dataset recorded at
night is marked with *, the one recorded in heavy rain with **)

P1 (f) P2 (m*) P3 (f) P4 (m**) P5 (f) P6 (m) P7 (f) P8 (m)
Deletion 26 17 18 59 62 5 14 14
Merge 7 34 51 72 29 4 25 13
Correct 46 20 17 30 7 36 29 19
Total 81 76 94 167 102 47 70 56
Merging Output 3 9 10 24 9 2 10 6
Fragmenting Output 3 9 10 7 2 4 4 21
Insertion 10 25 9 12 2 12 14 5
Total Output 63 65 52 78 25 54 57 52

ground and output match; deleted (D), when there is no matching output; inserted (I’), when there is
no matching ground; fragmented (F), when a ground is recognized by more than one matching output;
and merged (M), when a ground truth event is connected to one or more others by a single large
matching output event. We further refer to a “fragmenting” output (F’) as any one of the matching
outputs that help create a fragmented ground event. Similarly, we refer to a “merging” output (M’) as
the large output event that merges two or more ground events. If a ground event is both fragmented
and merged, we refer to it as FM; similarly an output event can be both fragmenting and merging
(FM’).

Figures 8(a) and 8(b) show that SVM correctly classifies 227 reading events while STR is correct in
181 cases. These events account for 31.3% (SVM) and 24.9% (STR) of the total number of actual reading
events. The largest sources of errors are event deletions (SVM: 188, STR: 257) and event merges (SVM:
254, STR: 278). Comparing the number of merges (M) with the number of merging outputs (M’), the
EAD also indicates that, for both classifiers, a large number of short reading events got merged into
a much smaller number of reading output events. Figure 8(c) shows that only using the horizontal
eye-movement component does not considerably reduce the event-based recognition performance (224
correctly classified reading events).

6.3 Event-Based Performance for Each Participant

Table III reveals large interperson differences in the event-based recognition performance for SVM
with head-based segmentation. More than 50% of the total number of deleted events are caused by
only two participants, that is, P4 (59 deletions) and P5 (62 deletions). P4 has the highest error counts
for merged (72 events) and merging returns (24 events). In contrast, P1 and P6 achieved the best
performance with 46 (P1) and 36 (P6) correctly classified events, 7 (P1) and 4 (P6) merged events, as
well as only 5 deleted events (P6).

6.4 Contribution of Head-Based Segmentation

Based on these results we further investigated the contribution of the head-based segmentation to the
overall recognition performance of the SVM classifier. The right EDD in Figure 7 shows that—without
head-based segmentation—the time-based recognition performance of SVM decreases to 73.0% preci-
sion (recall 72.4%) and a SEL of 6.4%. Comparing these results with the left EDD in Figure 7 clearly
shows a drop in recognition performance but one that, depending on the particular end application,
may still be considered acceptable.

The event-based performance analysis shown in Figures 8(b) and 8(d) draws a different picture.
Without head-based segmentation, SVM correctly classifies only 52 events while causing 158 event
deletions; 160 ground truth events to be fragmented and merged; 290 merged events; 151 fragmenting
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and merging outputs; 519 fragmenting outputs; and 631 insertions. Expressed as a percentage of the
total number of actual reading events, the percentage of correctly classified events drops to 7.2%.

7. DISCUSSION

7.1 On the Recognition Performance

Two different approaches to recognizing reading based on EOG in a mobile setting have been described
and investigated in this work. String matching is computationally more lightweight, as it only uses
simple arithmetic; it can be easily adapted to a future online implementation, for example on a wear-
able device. As we have shown in Bulling et al. [2011] a feature-based approach such as SVM is more
flexible and scales better with the number and type of activities that are to be recognized. However,
this also comes at a higher computational complexity.

Using person-independent parameters and a NULL class of over 50%, SVM performs best with an
average precision of 87.7% (recall 87.9%) over all participants (see Figure 7). SVM also outperforms
string matching with respect to the event-based performance with 31.3% correctly classified reading
events (see Figure 8). As can be seen from Figures 7 and 8(c) these findings hold if only those features
extracted from the horizontal eye-movement component are used for recognition; features extracted
from the vertical eye-movement component contribute little to the overall recognition performance.
More than half of all event errors are merges and deletions. For many end applications, merge errors
may be considered less serious, as the actual reading events are still recognized correctly. Deletions
are a more serious type of error, as they refer to reading events that got removed completely. Table III
shows that P4 and P5 alone contribute more than 50% of all deletions. It remains to be investigated
whether in these cases the errors are caused by inaccuracies of the labeling process, by errors in the
head-based segmentation or by misclassification.

The proposed segmentation scheme contributes considerably to the overall recognition performance.
Without head-based segmentation, the time-based recognition performance drops by 14.7% in precision
and 15.5% in recall (see Figure 7). This drop in overall performance is caused by an increase in all error
classes except for deletions. This was to be expected, as the segmentation does not help in classifying
but in spotting the begin and end of reading activity in the continuous data stream. The percentage of
correctly classified reading events even drops by 24.1%, with the majority of errors being fragmentation
and insertion errors (see Figure 8). These findings suggest that time-based performance evaluation,
while commonly used in activity recognition research, is not sufficient to assess the performance of
an activity recognition system. It is crucial, too, to assess a system’s recognition performance in terms
of activity events. Multimodal sensing is a promising approach to improve event-based recognition
performance, particularly if, as shown in this work, it adds only little to the complexity of the sensor
setup.

7.2 On Electrooculography

Our study demonstrates that EOG is a robust technique for recording eye movements in mobile set-
tings. The main advantage of EOG over common video-based systems is the fact that the participants
only have to wear relatively unobtrusive and lightweight equipment. This contributes to the partici-
pants feeling unconstrained during the experiments, and therefore allows for natural reading behavior.

One drawback is that EOG electrodes require good skin contact. Poor placement of electrodes was the
reason for many of the problems in our work. We usually solved them by removing and reataching fresh
electrodes. The fact that the electrodes are stuck to the face may be regarded as inconvenient. In the
post-experiment questionnaire the participants reported that they did not feel physically constrained
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by the electrodes, sensors, or wires. It is clear, however, that for long-term use a more comfortable and
robust solution, such as the wearable EOG goggles described in Bulling et al. [2009], is desirable.

Baseline drift is perhaps an unavoidable problem for EOG recordings. It is for this reason that accu-
rate gaze tracking, for purposes such as target detection, might be difficult to achieve using wearable
EOG. By analyzing the dynamics of eye-movements, however, we can detect activities (such as reading)
without the need for accurate gaze tracking. It is also important to note that the recognition method-
ology presented here is not limited to EOG. All eye-movement features could be extracted equally well
from eye-movement data recorded using a video-based eye tracker.

7.3 On the Experiment

The Wii-remote proved to be a useful annotation tool, and was certainly preferable to video-based
offline annotation. This method is subject to inaccuracies when, for example, the assistant is distracted,
or when buttons are pressed and released too early or too late. However, labeling errors are an intrinsic
problem, especially in mobile settings, and a satisfying solution has not been found yet.

In the questionnaire, all participants declared that they did not feel distracted by people in the
street and were only partially aware of the experiment assistant. Half of the participants did report
a feeling of unease while reading and walking. This unease could clearly be seen in the EOG signal
by the occasional presence of small vertical saccades during reading whenever a participant looked up
from the text to check the way ahead.

Ideally, the most natural scenario would have involved recordings over a period of days or weeks.
This would allow us to better study the reading behavior of our participants and to open up interesting
questions regarding daily reading habits. Unfortunately, the battery lifetime of our recording equip-
ment limited recordings to a few hours. Therefore, the main improvement for future studies is to use
equipment that does not impose such restrictions but allows for long-term eye-movement recordings.

7.4 Limitations

One limitation of the current work is the assumption that reading only occurs during “head down”
periods. Our results show that these head movements do provide valuable information for reading
recognition in the current scenario. However, the assumption needs to be validated in other scenarios,
particularly those involving shorter reading sequences. Although half of our participants reported to
occasionally reading the newspaper while in transit, it was more common for people to read shorter
texts, such as advertisements, road signs, or timetables. As short reading sequences may not always
involve similar head movements, the proposed segmentation approach will likely need to be adapted.

The study also reveals some of the complexity we might face in using the eyes to detect a person’s
reading activity. The ubiquity of the eye involvement in everything a person does means that it is chal-
lenging to annotate precisely when a person is reading. It is challenging, too, to identify brief reading
events and to separate relevant eye movements from momentary distractions, such as reading while
walking. These problems may be solved, in part, by using video and gaze tracking for annotation.
Reading activity could also be studied at larger timescales to perform behavioral analysis rather than
activity recognition. Annotation will still be an issue, but one that may be alleviated using unsuper-
vised or self-labeling methods [Huynh et al. 2008; Bao and Intille 2004].

7.5 Considerations for Future Work

Additional modalities that are potentially useful for reading recognition - such as hand gestures or
upper-body postures - were not investigated in this work. Such modalities are still worth investigating
in the future as they may carry information that complements that derived from head movements. It
will be interesting to see whether a similar segmentation approach can be used with these modalities.
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This may, for example, allow us to detect the hand movements of a person taking a mobile phone out
of the pocket to spot the onset of the person’s subsequent activity of reading a text message.

Using multiple modalities will require to investigate more complex fusion approaches than simple
thresholding. For example, hand gestures or body movements could be recognised separately and the
corresponding classifier outputs be fused on the classifier level with that of an eye movement classifier.
The light-weight string matching algorithm could not only be extended to support both eye movement
components but also to support these additional modalities, e.g. to detect typical eye-motor coordina-
tion activities.

Finally, eye movements are also linked to a number of cognitive processes of visual perception -
such as visual memory, learning, or attention - and are therefore often called “a window to mind and
brain”. If it were possible to infer such processes from eye movements, this may lead to cognition-aware
systems - systems that are able to sense and adapt to a person’s cognitive state [Bulling et al. 2011].

8. CONCLUSION

In this work we have shown that multimodal fusion of information derived from eye and head move-
ments is a robust approach for recognizing reading activity in daily life scenarios across different
people. The proposed method of exploiting the sensorimotor coordination of eye and head movements
during reading increased the recognition performance considerably. This raises the question of whether
different reading behaviors and attention levels to written text can be detected automatically. The pro-
posed segmentation approach is computationally lightweight and paves the way for developing robust
end applications that include reading recognition. For example, a “reading detector” could enable novel
attentive user interfaces which take into account aspects such as user interruptibility or the level of
task engagement.
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