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Abstract— Mimicking of human-like arm movement charac-
teristics involves considering three factors during control policy
synthesis: (a) task requirements, (b) noise during movement
execution, and (c) optimality principles. Previous studies showed
that when these factors (a-c) are considered individually, it is
possible to synthesize arm movements that either kinematically
match experimental data or reproduce the stereotypical tripha-
sic muscle activation pattern. However, no quantitative compar-
ison has assessed the realism of arm movements generated by
each factor, nor has it been determined whether combining
these factors results in movements with human-like kinematic
characteristics and the triphasic muscle pattern. To investigate
this, we used reinforcement learning to learn a control policy for
a musculoskeletal arm model, aiming to discern which combina-
tion of factors (a-c) results in realistic arm movements according
to four frequently reported stereotypical characteristics. Our
findings indicate that incorporating velocity and acceleration
requirements into the reaching task, employing reward terms
that minimize mechanical work, hand jerk, and control effort,
along with the inclusion of noise during movement, leads to
realistic human arm movements by reinforcement learning.
We expect that the gained insights will help in the future to
better predict desired arm movements and corrective forces in
wearable assistive devices.

I. Introduction
In aging societies, the number of people benefiting from

motor rehabilitation is on the rise [1]. Assistive devices
promise support in activities of daily living, e.g., reaching
for tools and objects [2]. The design and control of assistive
devices would benefit from models accurately predicting
human movement. Reinforcement learning in combination
with biomechanical models can lead to the emergence of
natural characteristics, such as gait kinematics [3] and hand
trajectories [4]. However, this requires identifying reward
terms and task requirements that lead to realistic movements.

Arm-reaching movements exhibit highly stereotypical
kinematics and temporal characteristics. Important charac-
teristics documented in literature are: (i) roughly straight
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hand trajectories, (ii) bell-shaped tangential velocity profiles
[5], [6], (iii) triphasic muscle activation pattern [7], [8], i.e.,
the alternating activation of agonist and antagonist muscles,
and (iv) linear relationship between movement time (MT)
and index of difficulty (ID) (a.k.a Fitts’s law) [9]. Several
optimality principles have been proposed for deterministic
prediction of arm-reaching movements, such as minimal
work, jerk or muscular effort [10], [11]. Flash et al. [11]
found that minimization of hand jerk predicts characteristics
(i&ii) in point-to-point movements. Wochner et al. [12]
indicated that minimization of mechanical work, jerk, and
muscle stimulation command (effort) predicts characteris-
tics (i&ii) in point-to-manifold movements. Finally, Ueyama
et al. [13] demonstrated that minimization of control effort
and consideration of position, velocity, and force require-
ments in the reaching task predict characteristics (i-iii). As
a stochastic approach, Fischer et al. [4] applied constant
and signal-dependent noise of muscle stimulation amplitude.
Combined with minimization of movement time they were
able to reproduce characteristics (i&ii&iv) on point-to-point
movements. To our knowledge, no simulation approach has
investigated all four characteristics.

More precisely, three factors influence the resulting be-
havior of the control policy to generate human character-
istics of arm movement: (a) the chosen task requirements,
(b) inclusion of noise during movement execution and (c) the
chosen optimality principles. Some of these factors have been
evaluated based on their ability to generate kinematic charac-
teristics that match experimental data, while others evaluated
the emergence of the triphasic muscle activation pattern.
However, no quantitative comparison has been conducted on
the realism of the arm movement generated by each factor; as
well as whether a partial or total combination of all factors
results in arm movements with human-like kinematic and
muscle activation pattern.

The purpose of this study is to investigate which com-
bination of factors (a-c) result in realistic arm movements
according to the four stereotypical characteristics (i-iv) de-
fined above. We test this using reinforcement learning to
learn a control policy for a musculoskeletal arm model and
systemically investigate a combination of (a) the chosen
task requirements, (b) inclusion of noise during movement
execution and (c) the chosen optimality principles with the
aim of methodically evaluating their contribution—for the
first time—in one model. We expect that the gained insights
will help in the future to better predict desired movements
and corrective forces in assistive devices.
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Fig. 1. Framework to systematically combine three factors that generate arm movements: (a) different task requirements, (b) inclusion of noise during
movement execution, and (c) optimality principles grounded on the minimization of mechanical work, hand jerk and muscle stimulation command (effort).
Each combination creates a unique learning environment with distinctive challenges and movement priorities: execution noise modifies the control commands,
while optimality principles and additional task requirements shape the reward. Shown below are the metrics for documented stereotypical characteristics
of human arm movement: (i) roughly straight hand trajectory, (ii) bell-shaped velocity profile, (iii) triphasic muscle activation pattern, and (iv) Fitts’s law.

II. Methods

In a nutshell, the factors (a-c) are categorized into two
primary domains: models and task requirements. We in-
vestigate four models: the baseline model only aims at
minimizing movement time. In the other three models, the
baseline model is combined with either execution noise (b),
optimality principles (c) characterized by the minimization
of mechanical work, hand jerk, and muscle stimulation
commands, or a hybrid model that considers execution noise
and optimality principles. For the task requirements (a) we
consider three potential configurations: position only (pos),
position and velocity (pos-vel), and position, velocity, and
acceleration (pos-vel-acc), all aiming to fulfill respective
kinematic constraints at the target location. Details will be
given below. This organization facilitates the exploration of
how different combinations of each factor (a-c) influence the
behavior of the resulting control policy, as is illustrated in
Figure 1. By finally analyzing the resulting movements ac-
cording to the stereotypical characteristic (i-iv) of human arm
movement, we can identify essential elements for generating
arm movements that exhibit human characteristics without
enforcing them explicitly as reward terms.

The simulation workflow requires: generation of muscle
stimulation commands, simulation of human arm dynamics,
calculating rewards, and using metrics for goal-oriented
movements. In the following subsections, these will be
described in detail.

A. Muscle stimulation commands
The RL agent utilizes Maximum a Posteriori Optimiza-

tion (MPO) [14] combined with DEP-RL [15] for explo-
ration; a novel approach that demonstrated robust perfor-
mance controlling musculoskeletal systems. The MPO im-
plementation follows the default settings provided by the

TonicRL library [16]1, and the DEP-RL configuration mirrors
the hyperparameters outlined for the same arm model in [15].

The RL agent undergoes training with the inclusion of
execution noise (when activated) and random position targets
sampled from an area determined by the arm model kine-
matics. The control policy (π) computes muscle stimulation
commands (u) based on the current observation from the
environment (oenv). The execution noise is introduced as
uf = (1+η1)u+η2, modifying the amplitude of control com-
mands u, where η1 represents the signal-dependent noise, η2
represents the constant motor noise and uf is the applied
muscle stimulation command. Both noise signals are random
Gaussian variables, each with a mean of 0. The standard
deviation for η1 is 0.103 and for η2 is 0.185 [17].

B. Simulation of human arm dynamics
The physics engine MuJoCo [18] simulates the muscle

activation dynamics resulting in the generation of muscle
forces that drive the arm movements. In MuJoCo, a mus-
culoskeletal model of the human arm with two degrees of
freedom and six actuated muscles is available [18]. The
original model was modified to generate arm movements in
the sagittal plane (considering gravity). The position error
is calculated between the tip of the forearm and the desired
position (reaching goal). The RL environment considers the
same initial conditions of the arm model for all episodes: 0◦
for the shoulder angle, 90◦ for the elbow angle, zero joint
velocities and zero muscle activation level. The environment
observation comprises Cartesian states2, joint states3, muscle
states4, mechanical work, hand jerk and the goal position.
The agent’s policy network generates control commands
every 10ms while the MuJoCo physics engine updates the

1except for the following parameters: batch size with 256, batch iteration
with 30, steps before batches with 1e6 and steps between batches with 50.



arm model every 2ms and uses the same control command
for five consecutive time steps.

C. Reward formulation
Previous studies have successfully generated reaching arm

movements utilizing an optimal control framework [13], [12].
This methodology incorporates a terminal cost that penalizes
deviations from a desired final state and an accumulated
cost associated with the states and control commands during
the trajectory [19]. Building upon this, the reward function
consists of a sparse reward linked to the fulfillment of
kinematic requirements at the end of the trajectory and a
dense reward associated with executing optimal movements.

The immediate reward function is a combination of

r = c1rsparse − c2roptimal, (1)

where c1,2 represent weighting coefficients to establish prior-
ity during the generation of arm movements, rsparse penalizes
movement duration and roptimal encourages optimal behavior
based on the optimality principles described above. We
select: c1 = 0.2 and c2 = 0.8.

Generally, arm-pointing movements are executed quickly.
Consequently, previous research employed a constant neg-
ative reward for each step transition until the position
requirement is met [4]. Additionally, Ueyama et al. [13]
found that velocity and force requirements influence the
stereotypical triphasic activation pattern. Considering these
findings, we incorporate terminal velocity and acceleration
(proportional to force in Cartesian space) requirements into
the reaching task. Therefore, rsparse depends on meeting the
goal tolerance in position as well as the additional kinematic
requirements.

rsparse =

{
0, if ∥phand − pgoal∥ ≤ ptol & treq = true
−1, otherwise,

(2)
where phand is the Cartesian hand position, pgoal is the
Cartesian desired position, ptol represents goal tolerance and
treq is the state of the additional task requirements as

treq =


true, pos
∥v∥ ≤ vtol, pos-vel
∥v∥ ≤ vtol & ∥a∥ ≤ atol, pos-vel-acc

where v, a are hand velocity and acceleration, vtol, atol are
tolerance for velocity and acceleration. We choose vtol, atol
to be 10% of the maximum values observed solely under
position task requirement: vtol = 20 cm

s and atol = 100 cm
s2 .

Furthermore, we consider four values for ptol to address
various difficulty levels in the reaching task. The difficulty
associated with reaching movements can be calculated using
the index of difficulty (ID) [9], defined as log2

(
D
W + 1

)
,

where D represents goal distance and W = 2ptol represents
endpoint variability. The values are selected conveniently to

2position, velocity and acceleration of the hand, i.e., tip of the forearm.
3position, velocity, acceleration and jerk of each arm joint
4muscle activity, muscle forces, muscle lengths and muscle velocities

ensure that the resulting difficulty indices (ID = 2 to 5)
are integers: D = 63 cm (used for evaluation) and ptol =
10.5 cm, 4.5 cm, 2.1 cm, 1.0161 cm. For each combination
of model and task requirements, one RL agent is trained for
each tolerance value, resulting in a total of 48 RL agents.

Exclusively focusing on minimizing movement time will
generate bang-bang control solutions with asymmetric veloc-
ity profiles [20]. Wochner et al. [12] found that bell-shaped
velocity profiles emerge in point-to-manifold tasks only when
optimal behavior considers the minimization of mechanical
work, hand jerk, and muscle stimulation commands (related
to muscular effort). As both Berret et al. [10] and Wochner et
al. [12] suggested that it is crucial to consider a combination
of optimality principles to tackle the redundancy problem,
we therefore, consider the suggested combination roptimal of
three optimality principles as:

roptimal =
c3reffort + c4rjerk + c5rwork

c3 + c4 + c5
, (3)

where c3,4,5 set priority between optimality principles, reffort
is computed as mean value of muscle stimulation commands,
rjerk is estimated by finite difference computation between
the current and one previous acceleration values, instanta-
neous work (power) rwork is computed as |ϕ̇1τ1| + |ϕ̇2τ2|,
where ϕ̇1,2 represents the angular velocity of shoulder and
elbow, and τ1,2 indicates the torque of shoulder and elbow.
We normalize each optimality principle by its observed
maximum value: rjerk = 1000 m

s3 and rwork = 100 J. In
pre-tests, we found that smooth muscle profiles were only
achieved if all the three terms are considered with the
following coefficients: c3 = 1, c4 = 8, and c5 = 1.

D. Metrics for goal-oriented movements
We evaluate each agent in its training environment. The

position target for all agents is positioned 29.5 cm to the
left and 55.7 cm upward relative to the tip of the forelimb.
We run 1000 rollouts for each agent to capture their average
behavior. Since each test episode has a different movement
time (MT), we temporally normalize the recorded data to
make trajectory characteristics comparable. We recognize
outliers by examining the velocity profile. Any trajectory with
an integral velocity beyond the interquartile range (between
the 25th and 75th percentiles) is excluded from consideration.
The mean computed over the remaining rollouts is employed
for the analysis of the movement’s characteristics.

The performance of all trained agents is quantified with
four metrics associated with the stereotypical characteris-
tic (i-iv) observed in goal-oriented movements:

i. Straight line deviation (pline): This metric reports the
R-squared between the straight line from initial point
to target and the actual hand trajectory.

ii. Bell-shaped velocity profile (vbell): We determine the
onset and offset of the velocity profile by the threshold
v > 0.1vmax of the peak velocity. A Gaussian is fitted
between onset and offset of the velocity profile. The
Gaussian strictly considers peak velocity as amplitude,
and the fit function of MatLab computes the mean



and standard deviation of the Gaussian. This met-
ric (vbell) reports the R-squared to indicate how bell-
shaped each velocity profile is.

iii. Triphasic muscle pattern (utriphasic): This metric
analyzes the muscle activation pattern of each agonist-
antagonist muscle pair in the arm. The aim is to capture
if an antagonistic pair changes operation mode, e.g.,
if in the beginning elbow flexor is actively flexing
the elbow and then, elbow extensor activity rises and
elbow flexor activity falls to decelerate the movement,
this is considered a second phase. We quantify this
by evaluating if muscle activation slopes exchange
directions and by the threshold ∆ > 0.25∆max and
∆ > 1.5 e−3 of difference between them. If this is the
case, it is considered a new phase of muscle activation.
The metric verifies if the reported triphasic pattern in
the literature [13] occurs in a muscle pair, assigning a
score of 1 if true and 0 otherwise.

iv. Fitts’s law (RF )): This metrics reports the correlation
coefficient RF to indicate how strong the linearity is.

III. Results
Overall, incorporating velocity and acceleration require-

ments into the reaching task (pos-vel-acc), employing reward
terms that minimize mechanical work, hand jerk, and control
effort, along with the inclusion of noise during movement,
leads to the most realistic arm movement according to the
four proposed metrics (i-iv). Furthermore, increasing index
of difficulty, from ID = 2 to 5, yields more bell-shaped
velocity profiles and the emergence of the third phase in
the muscle activation pattern. These results are presented in
Table I, which shows the performance of all agents for each
proposed metric across all difficulty indices (ID = 2 to 5).
Note that in Table I, RF only displays one value, as this
metric utilizes all difficulty indices to determine how strong
the linear relationship (correlation) between movement time
(MT) and index of difficulty (ID) is (Fitts’s law). Also, the
velocity profiles obtained with only position task requirement
(pos), do not reach the lower threshold of 10% of the
peak velocity; consequently, these velocity profiles are not
considered for the vbell metric (displayed as solid line ”-”).

A. Straight line deviation (pline)
The best performance in terms of straight line deviation

pline across the majority of difficulty indices (ID = 2 to
5) for baseline, execution noise and optimality principles
models is linked to pos-vel-acc task requirement (Tab. I).
Conversely, the best performances of the hybrid model are
distributed across pos and pos-vel task requirements. All
hand trajectories with difficulty index ID = 5 are illustrated
in Figure 2. The figure illustrates the progressive straighten-
ing of hand trajectories as more kinematic requirements are
incorporated into the main task. It is noteworthy that even the
worst pline values (0.91, 0.92, ...) still represent lines that we
would consider roughly straight. Consequently, solely relying
on the pline metric makes it implausible to indicate which
combination will yield the most realistic hand trajectory.

Fig. 2. Hand trajectories generated by all models, considering the three
possible task requirements and difficulty index ID = 5.

B. Bell-shaped velocity profile (vbell)
The best performance in terms of bell-shaped velocity

profile vbell across the majority of difficulty indices (ID = 2
to 5) for baseline, execution noise, optimality principles
and hybrid models is linked to pos-vel-acc task requirement
(Tab. I). The hybrid model combined with pos-vel-acc task
requirement, consistently exhibits the highest vbell values,
i.e., most bell-shaped velocity profiles, across all difficulty
indices. In addition, Table I reveals a increasing trend of vbell
values with increasing index of difficulty. The velocity profile
for ID = 5 of each model with pos-vel-acc task requirement
are shown in Figure 3. The figure illustrates that all models
align well with the right side of the Gaussian model, and
fitting errors arise from the left side.

Fig. 3. Velocity profiles generated by each model, considering velocity
and acceleration requirements into main task and difficulty index ID = 5.
The dashed line represents the fitted Gaussian model.

C. Triphasic muscle pattern (utriphasic)
The best performance in terms of triphasic muscle pattern

utriphasic across the majority of difficulty indices (ID = 2



TABLE I
Analysis of movement characteristics of each combination of model and task requirement using the proposed metrics§.

Metric Task
requirements

Models
Baseline Execution noise Optimality principles Hybrid

Index of difficulty (ID) Index of difficulty (ID) Index of difficulty (ID) Index of difficulty (ID)
2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

pline

pos 0.97 0.97 0.97 1.0 0.99 1.0 0.97 0.96 0.96 0.95 0.94 0.99 0.98 0.94 0.96 0.98

pos-vel 0.91 0.95 0.95 0.97 0.99 1.0 0.99 0.99 0.96 0.97 0.93 0.94 0.97 0.92 0.99 1.0

pos-vel-acc 1.0 0.98 0.98 1.0 0.98 0.99 1.0 1.0 0.96 0.99 0.96 0.98 0.95 0.93 0.97 0.98

vbell

pos† - - - - - - - - - - - - - - - -
pos-vel 0.86 0.73 0.80 0.94 0.81 0.80 0.76 0.90 0.86 0.88 0.82 0.91 0.88 0.83 0.89 0.94

pos-vel-acc 0.90 0.78 0.93 0.95 0.74 0.80 0.79 0.95 0.89 0.92 0.81 0.91 0.90 0.92 0.95 0.97

utriphasic

pos 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0

pos-vel 1* 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

pos-vel-acc 1* 1 0 1* 1 1 1 1* 1 1 1 0 1 1 1 1*

RF
‡

pos 0.985 0.967 0.974 0.967

pos-vel 0.956 0.997 0.998 0.983

pos-vel-acc 0.963 0.985 0.986 0.929

§ The highest values between task requirements for each metric, model, and difficulty index are highlighted in green. Among these values, the best
performance across difficulty indexes for each metric is highlighted in bold dark green.

† The trajectories of this terminal condition are invalid for the vbell metric as they do not reach the lower threshold of 10% of the peak velocity.
‡ RF has only value because this metric determines the correlation coefficient across all difficulty indices (ID=2...5).
* These combinations exhibit two or three muscle pairs with a triphasic muscle pattern.

to 5) for all models (Baseline, Execution noise, Optimality
principles and Hybrid) is linked to pos-vel and pos-vel-acc
task requirements (Tab. I). The muscle patterns for ID = 5
of hybrid model for each task requirement are shown in
Figure 4. The figure illustrates that both pos-vel and pos-
vel-acc task requirements give rise to a triphasic muscle
pattern in the elbow muscle pair, whereas only position task
requirement (pos) results in a biphasic pattern in the three
muscle pairs. Furthermore, the figure displays two triphasic
muscle patterns for the pos-vel-acc task requirement. Sim-
ilarly, Figure 5 illustrates that duration of the third muscle
phase increases with larger index of difficulty (ID).

D. Fitts’s law (RF )
The models Execution noise, Optimality principles and

Hybrid obtain their highest correlation coefficient RF when
incorporating velocity requirement into the main task (pos-
vel) (Tab. I). In contrast, the Baseline model attains its
highest correlation coefficient RF when employing only the
position task requirement. The optimality principles model
demonstrate slightly superior performance in RF compared
to Baseline, Execution noise and Hybrid models. The linear
relationship between Movement Time (MT) and Index of
Difficulty (ID) is graphically illustrated in Figure 6 for the
Optimality Principles model considering the three possible
task requirements. Additionally, the figure illustrates the
increase in movement time variance as more kinematic
requirements are incorporated into the main task. It is crucial
to emphasize that all combinations generate a robust linear
relationship, with correlation coefficients RF > 0.9. Conse-
quently, although certain combinations exhibit higher corre-
lation coefficients than others, it is implausible to indicate

Fig. 4. Muscle activation pattern of the hybrid model, considering the three
possible task requirements. The agonist-antagonist muscle pair of the arm
are denoted as: Monoarticular shoulder (S), Biarticular elbow-shoulder (B)
and Monoarticular elbow muscle (E). Blue and Red lines represent muscle
activation of agonist and antagonist muscles, respectively.

which combination yields the most realistic arm trajectory
based solely on the RF .



Fig. 5. Muscle pattern of Monoarticular elbow muscle (E) for hybrid model
with pos-vel-acc task requirement. The third phase duration increases with
larger index of difficulty (ID), i.e., higher endpoint accuracy.

Fig. 6. Graphic representation of the linear relationship between Movement
Time (MT) and Index of Difficulty (ID) for the optimality principles model,
considering the three possible task requirements. The red dots represent the
average movement time.

IV. Discussion
Through the systematic combination of factors (a-c), we

identify three key considerations for generating human-like
characteristics in point-to-point arm movements. First, in-
cluding both velocity and acceleration as task requirement
((a), pos-vel-acc), results in good or excellent values across
all metrics and in the majority of difficulty indices, regardless
of the model. Second, using noise b) during movement
execution, in combination with reward terms c) minimizing
mechanical work, hand jerk, and control effort results in the
most bell-shaped velocity profile across the majority of diffi-
culty indexes (except for the position-only task requirement).
Third, a higher endpoint accuracy, i.e., a larger index of
difficulty (ID), leads to a longer duration of the third muscle
phase and velocity profiles with a better-defined bell shape.
According to Wierzbicka et al. [7], the role of this third
phase is to regulate the braking forces to guide the hand
towards the target position. Therefore, the effect of the index
of difficulty (ID) can be understood as the prolongation of
the deceleration phase to achieve high endpoint accuracy,
which in turn smooths the velocity profiles on the right
side, enhancing the bell shape. It is noteworthy that although
increasing the index of difficulty (ID) has improved the bell
shape, larger values will cause the velocity profile to become
more positively asymmetric [21].

In addition, we found that including the velocity require-
ment into the reaching task (pos-vel) can yield comparable

results to considering both velocity and acceleration (pos-vel-
acc). The primary distinction lies in slightly lower values of
bell-shaped velocity profile vbell. Moreover, we found that
the triphasic muscle pattern can emerge when incorporating
requirements of either velocity (pos-vel) or velocity and
acceleration (pos-vel-acc) into reaching tasks. This contrasts
with Ueyama et al. [13], who suggests position, velocity
and force (equivalent to acceleration) are necessary. Unlike
Ueyama et al. [13], our approach does not require predefining
the movement time for arm movement generation. Although
it is not clear how predefining the movement time (MT)
influences the emergence of the triphasic muscle pattern,
setting a value far from that calculated with Fitts’s law could
result in unrealistic arm movements.

It is noteworthy to highlight that the metrics pline,
utriphasic and RF do not show large differences across all
combinations. This suggests that all investigated models and
task requirements (except for position only) lead to somewhat
realistic arm movements, at least for the simple planar point-
to-point movements investigated here.

Although our control approach generates realistic arm
movements with human-like characteristics, our study has
some limitations. The arm model used incorporates only
two degrees of freedom and six muscles. Consequently, our
model does not fully account for the entire joint and muscle
redundancy found in a real human arm. Furthermore, the
investigated task includes only point-to-point reaching tasks,
whereas more openly defined tasks such as point-to-manifold
reaching might be interesting for future research, as they
offer more freedom in arm movement generation. Previous
studies [10], [12] have shown significance differences in the
generated arm trajectories using point-to-manifold reaching
that have not been observed in point-to-point movements.
Moreover, complex movements in a complex arm model may
further distinguish between the different combinations such
that a solution for predicting realistic human arm movements
with RL could aid the development and control of assistive
devices.
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