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Figure 1: (left) Example importance annotations for the task “Between which two years was public trust in government the lowest?” obtained
using three tools: Adaptive/Static Grid (Ours), BubbleView [KBB∗17], and ImportAnnots [OAH14]. (right) Average quantity and ranking
for each annotation method for all metrics used in our experiment. A darker color represents a higher ranking in each row.

Abstract
Knowing where people look in visualizations is key to effective design. Yet, existing research primarily focuses on free-viewing-
based saliency models— although visual attention is inherently task-dependent. Collecting task-relevant importance data re-
mains a resource-intensive challenge. To address this, we introduce Grid Labeling – a novel annotation method for collecting
task-specific importance data to enhance saliency prediction models. Grid Labeling dynamically segments visualizations into
Adaptive Grids, enabling efficient, low-effort annotation while adapting to visualization structure. We conducted a human-
subject study comparing Grid Labeling with existing annotation methods, ImportAnnots, and BubbleView across multiple met-
rics. Results show that Grid Labeling produces the least noisy data and the highest inter-participant agreement with fewer
participants while requiring less physical (e.g., clicks/mouse movements) and cognitive effort. An interactive demo and the
accompanying dataset are available at https://github.com/jangsus1/Grid-Labeling.

CCS Concepts
• Human-centered computing → Visualization techniques; Empirical studies in visualization;

1. Introduction

Where do people look in visualizations under tasks? Understanding
salient parts of visualizations is crucial for designing compelling vi-
sualizations that optimally support analytic tasks [BKO∗17]. How-

ever, modeling saliency is challenging as where people visually fo-
cus is inherently task-dependent. For example, during free viewing,
participants may primarily engage in bottom-up processes driven
by visually salient elements, such as a bright red patch [KW79].
However, when given an analytic task, participants are more likely
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to engage in top-down processing, directing their attention toward
task-relevant visualization regions. For example, in a “find the ex-
treme” task, they may focus on the tip of the highest bar [GL13].
In this context, task-dependent saliency is strongly related to im-
portance, which involves actively filtering areas with sufficient in-
formation for task-solving. Existing work has defined the image’s
“importance” as regions where individual annotators believe as im-
portant [OAH14]. We supplement this definition by taking a task-
dependent approach to propose a new alternate definition for “task-
specific importance” as “the minimum area in a visualization re-
quired for a user to complete a task successfully.”

However, existing mouse-tracking-based saliency collection
methods rely on free-viewing [NMF∗20,OAH14,KBB∗17], as they
are designed to encourage users to explore and describe an im-
age. However, because visualizations are often used for analytic
tasks [AES05], we posit that an effective model for predicting
where people look should consider task relevance when identi-
fying regions of importance. To address this limitation, we con-
tribute Grid Labeling, a toolkit to enhance existing saliency pre-
diction models with task-specific annotation. A key advantage of
our tool is that it is more resource-efficient than traditional meth-
ods, such as eye-tracking or mouse-tracking [BKO∗17, OAH14,
KBB∗17, NMF∗20, WWA∗24].

Grid Labeling segments visualizations into Adaptive Grids that
dynamically adjust based on existing graphical elements, mak-
ing it easily adapted to various visualization sizes and designs.
This approach enables participants to identify critical areas sim-
ply by clicking relevant grids, eliminating the need for cum-
bersome mouse interactions, such as free-form drawing to an-
notate regions [OAH14] or clicking the same regions multiple
times [KBB∗17]. Moreover, Grid Labeling streamlines data col-
lection, reducing the number of participants required to converge
to a stable importance map. In a human-subject experiment, we
demonstrate that, compared to the two popular approaches, Im-
portAnnots [OAH14] and BubbleView [KBB∗17], Grid Labeling
produces less noisy data with higher levels of agreement between
participant responses. Additionally, participants reported lower per-
ceived effort when using our method. We also explore the key dis-
tinction between saliency and importance, contributing to differ-
ences in annotation duration.

The specific contributions of our work are three-fold:

• We introduce the Grid Labeling method for capturing “task-
specific importance” in visualizations, which enhances task-
specific saliency modeling.

• Through a human-subject study, we illustrate the importance of
considering task-specific “areas of importance” in visualizations.

• We quantitatively demonstrate that our Grid Labeling method
outperforms traditional crowd-sourcing methods for collecting
task-specific importance data in visualizations. Participants in
our study could identify important areas with less effort and with
higher inter-participant agreement.

2. Related Work

Researchers have been leveraging eye tracking methodologies from
human perception research to model how people perceive im-

(a) Static Grid (b) Adaptive Grid

Figure 2: Comparison of Static and Adaptive Grid segmentations
applied to a histogram from CharXiv [WXH∗24]. Static Grid splits
the visualization into equal-sized rectangles, while Adaptive Grid
dynamically produces patches that fit the visualization layout.
ages [KNEM15, CPS16]. These models help assess the appear-
ance and salience of visual representations, enabling eye move-
ment tracking to understand the perceptual and cognitive mecha-
nisms of scene perception [IKN98] and object detection [BCJL15].
The existing saliency models perform well in naturalistic scenes;
however, there are unique perception rules and cognitive biases
in the artificial world of data visualization [CAFG12], and, thus,
these models do not accurately predict where people would look
in visualizations. Visualization researchers have been building vi-
sual saliency models geared to visualizations [MHD∗18,BRB∗16].
However, these models rely on handcrafted features, making it dif-
ficult to generalize to complex visualizations. Additionally, these
models cannot incorporate textual information to generate task-
specific saliency maps since the prediction is solely based on visual
inputs.

With deep learning, gaze data became the ground truth for
saliency models [SCHE23, WBB24], increasing prediction perfor-
mance and enabling task-specific saliency [WWA∗24]. These mod-
els require large datasets, but collecting accurate gaze data is ex-
pensive and cumbersome. To address this, researchers proposed
gaze proxies. For example, WebGaze [PSL∗16] offers low-cost
webcam-based data collection for online studies, though it strug-
gles with quality due to low resolution and poor calibration. There-
fore, mouse cursor-based annotation tools [JHDZ15, KBB∗17,
OAH14] were proposed to improve data quality. Among these
methods, BubbleView [KBB∗17] was the most widely used tool
for capturing visual saliency and importance [BKO∗17,WWA∗24].
However, BubbleView is primarily designed for exploring images
and gathering information, which differs slightly from the goal of
capturing perceived importance. As a result, while BubbleView is
well-suited for measuring visual saliency, it may not be the best
tool for capturing task-specific importance [NMF∗20]. Built upon
these prior approaches’ limitations, our Grid Labeling aims to col-
lect responses that cover all essential areas of the visualization with
minimum noise, leading to more efficient data collection.

3. Grid Labeling

Existing saliency and importance annotation methods use circu-
lar [KBB∗17] or freeform [OAH14] shapes, which do not pre-
serve the structure of visual elements, particularly when creating
saliency maps by Gaussian kernels [WBB24]. Inspired by Google’s
reCaptcha [Goo25], we propose Grid Labeling, a patch-based an-
notation approach that addresses this limitation. With Grid Label-
ing, users annotate specific areas by clicking on image patches

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.



M. Chang / Grid Labeling: Crowdsourcing Task-Specific Importance from Visualizations 3 of 6

(Figure 2). This binary interaction — clicking or not clicking —
enforces discrete annotations, facilitating faster response aggrega-
tion by promoting higher consensus.

3.1. Static Grid

As a baseline, we first designed the Static Grid by dividing the vi-
sualization’s height and width into N equal sections, resulting in N2

patches. We leave N as a hyperparameter, which was set to 8 in our
experiment. This made the patch size approximately equivalent to
the recommended circle size in BubbleView [KBB∗17].

3.2. Adaptive Grid

To further reduce annotation time and effort, we introduce an Adap-
tive Grid that groups smaller tiles into larger blocks aligned with the
visualization’s layout.

Step 1: Split Regions. We divide the visualization into three re-
gions: text, edge, and background. We filter out the text area with
PaddlePaddle OCR, followed by the Canny edge detection algo-
rithm to extract graphical elements. The remaining tiles not identi-
fied as text or edges are labeled as background.

Step 2: Defining the Tile Space. Let’s assume we are filling in
the visualization with small tiles with the size of t (e.g., 32px),
which is the minimum patch size. Then the image would be covered
with a grid of tiles with dimensions M ×N (M = ⌊Height/t⌋ ,N =
⌊Width/t⌋), forming G ∈ {0,1}M×N . We individually build the bi-
nary grid for each region (text, edge, or background), which will be
covered with larger blocks in Step 3. Each entry Gi, j is set to 1 if
tile (i, j) belongs to the selected region and 0 otherwise.

Step 3: Optimizing Block Arrangement. We then assign larger
rectangular blocks that can minimally cover the entire grid. Define
binary decision variables Bw,h

i, j ∈ {0,1}, where Bw,h
i, j = 1 indicates

that a rectangular block of size w×h tiles is placed with its top-left
corner at tile (i, j). Our objective is to minimize the total number of
blocks: min∑i, j,w,h Bw,h

i, j , while the entire region must be covered
once without overlap between the blocks. This merges coverage
and non-overlap requirements into a single constraint:

∑
(i′, j′,w,h)

i′≤i<i′+h, j′≤ j< j′+w

Bw,h
i′, j′ = Gi, j, ∀(i, j).

We solve this optimization problem using Integer Linear Program-
ming (ILP) with OR-Tools’ constraint programming solver. By en-
forcing the exact coverage of each tile, we get patches that cover
the visualization while respecting the background contents.

4. User Study

We investigate how crowdworkers annotate important areas in vi-
sualizations with different annotation methods. We first demon-
strate that annotations differ when users are instructed to annotate
task-specific vs. task-agnostic areas, motivating the need for more
task-specific annotation data to be collected. We then compare four
methods participants can use to identify minimal task-relevant ar-
eas in a visualization: BubbleView, ImportAnnots, Static Grid, and

Adaptive Grid. We evaluate these methods based on four metrics:
task completion time, the number of participants required for con-
vergence, annotation effort (e.g., number of clicks), and usability.

4.1. Participants and Design

We conducted a power analysis based on pilot results. Considering
the smallest effect size across all comparison metrics (Cohen’s f
= 0.2715 for cognitive load), a target sample of 152 participants
would yield 80% power to detect an overall difference between
annotation methodologies at an α level of 0.05. We recruited par-
ticipants from Prolific (Mage = 38.5, σ = 11.9, 52 females) and
compensated them $12 per hour. We curated a set of 18 visual-
izations from ChartQA [MLT∗22] and CharXiv [WXH∗24], cov-
ering a diverse range of chart types (e.g., bar, stacked bar, pie,
line, Choropleth map, heatmap, histogram, scatterplot, and contour
plots). Each participant was then shown these selected charts in
a random order. In a between-subject set-up, participants were ran-
domly assigned to annotate them via one of four tools: BubbleView,
ImportAnnots, and Static/Adaptive Grid.

4.2. Procedure

The study was conducted as a between-subject experiment. After
consenting to the experiment, participants were instructed on how
to use the assigned annotation tool (BubbleView, ImportAnnots,
Static Grid, or Adaptive Grid). They first solved an example task
with a simple bar chart with one of the following prompts: anno-
tate the important area and describe key points, annotate the area
minimally required for you to identify the highest value in the chart
(results see Section 4.3). Then, they labeled 18 visualizations us-
ing the same tool. For ImportAnnots, participants were instructed
as annotate important areas related to answering the question. For
BubbleView, they were just asked to answer the question follow-
ing the prior work’s design [WWA∗24]. For Grid Labeling (Adap-
tive/Static), they were instructed to annotate “Task-Specific Impor-
tance.” In the end, they reported the tool’s usability using NASA-
TLX [HS88], completed an assessment of their visualization liter-
acy [PO23], and provided demographic information.

4.3. Results: Importance vs. Free-Viewing

We demonstrate the participants’ annotation behavior appeared sig-
nificantly different when they were instructed to annotate com-
ponents of the visualization they found important during free-
viewing, compared to when they were instructed to annotate the
importance area in response to a specific task, as shown in Fig-
ure 3. During task-agnostic annotation, the importance area is more
evenly distributed across the visualization with a slight emphasis on
the top of the visualization and the title text (aligned with existing
work such as patterns identified by [BKO∗17]). In contrast, the an-
notations cluster around the area with the smallest bar at the bottom
of the visualization in response to the find minimum task. This fur-
ther validates our case that existing models trained on free-viewing
annotation and eye-tracking data might not be the most predictive
for visualization saliency, considering salient regions can vary with
user intent and tasks.
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Figure 3: Averaged participants’ annotations for four tools when
applying different instructions. The task-specific instruction was
“What is the important area regarding this question: What is the
minimum value of the bar?”.
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Figure 4: Required number of participants to reach 90% similarity
compared to the aggregated importance. Five different similarity
metrics were used to measure the convergence.

4.4. Results: Methods Comparison

In the user study, we compared four annotation methods using five
metrics: usability, click counts, annotated area per mouse travel dis-
tance, annotation speed, and inter-participant agreement. The group
means per metric are summarized in Figure 1.

Usability: Participant Task-Load Analysis To measure the us-
ability of the annotation methods, we used the NASA-TLX scale,
which has six categories (mental demand, physical demand, tempo-
ral demand, effort, performance, and frustration). The MANOVA
suggested that the annotation methods statistically differ (Wilks’
Λ = 0.8626, F(18, 7362.88) = 21.94, p < 0.001), while indepen-
dent ANOVAs showed differences except for frustration. A post
hoc Tukey test followed the five remaining categories. ImportAn-
nots showed higher physical demand than others (p≤ 0.001). Static
Grid had lower temporal demand than Adaptive Grid and Bubble-
View (p ≤ 0.023) while also having higher performance than Bub-
bleView and ImportAnnots (p ≤ 0.028). For effort, ImportAnnots
and Static Grid were better than other tools (p < 0.001).

Interaction Efficiency: Click Count Comparison. The ANOVA
(F(32,608) = 248.995) and post hoc Tukey test suggested that the
significant effect is driven by the difference in click count be-
tween all pair-wise comparisons among methods except adaptive
and static grid (p = 0.42). Participants labeled important areas with

adaptive and static grids using fewer clicks than BubbleView. The
grid-based methods required more clicks than ImportAnnots, but
that is caused by the stroke tool, which allowed participants to an-
notate a large area while dragging the mouse with a single click.

Coverage Efficiency: Annotated Area per Mouse Travel Dis-
tance. We measured the coverage efficiency by dividing the anno-
tated area size by the mouse travel distance during annotation. With
ANOVA (F=30.33) and post hoc Tukey (p < 0.001), we observed a
significant difference between Adaptive Grid and Static Grid, hav-
ing higher coverage efficiency than BubbleView and ImportAnnots.

Time Efficiency: Annotation Speed Across Methods. ANOVA
(F=11.79) and the following Tukey test showed BubbleView re-
quired less time per annotation compared to other tools (p <
0.001), demonstrating its efficiency in annotation speed. How-
ever, we argue that the underlying reason stems from the differ-
ence between saliency and importance, where capturing impor-
tance may naturally involve more intention during the annotation
process [NMF∗20].

Convergence Speed: Agreement Across Participants. We exam-
ined the number of participants needed to achieve 90% similarity
with the aggregated mask using five similarity metrics: Spearman’s
Rank Correlation [Spe04], Structural Similarity Index [WBSS04],
Dice Coefficient [Dic45], Jaccard Index [Jac12], and Kullback-
Leibler (KL) Divergence [KL51], often used to measure difference
between continuous 2d maps. We measured the convergence of 10
different randomized orders of responses for more generalized re-
sults with smoother graphs. As shown in Figure 4, the Adaptive
Grid and Static Grid generally converge faster than the other tools
across most metrics, while the Adaptive Grid was the best perform-
ing in all metrics except Spearman’s R.

5. Discussion & Future Work

We contribute Grid Labeling, an annotation method for efficiently
crowdsourcing task-dependent important areas of visualizations.
Grid Labeling outperformed other approaches across all metrics,
as shown in Figure 1. While ImportAnnots [OAH14] had the
lowest click count and BubbleView [KBB∗17] required the least
time, Adaptive Grid achieved the highest inter-participant agree-
ment with the fewest participants across multiple metrics (e.g.,
SSIM, Dice, Jaccard, KL). Meanwhile, Static Grid demonstrated
higher usability, as indicated by NASA-TLX [HS88]. These results
highlight the potential of Grid Labeling in training task-specific
saliency models, minimizing text overemphasis, and enhancing
predictive accuracy. Considering the trade-offs, we recommend us-
ing an Adaptive Grid for maximizing convergence and a Static Grid
to improve usability.

Since the present study did not explore why participants labeled
certain grids as important and relied on an inter-participant agree-
ment for quality control, future work could investigate the reason-
ing behind these selections to provide a more high-level, repre-
sentational explanation, collecting a large-scale dataset and train-
ing a task-specific importance prediction model. Additionally, fu-
ture work could refine Adaptive Grid generation using vision-based
LLMs to enhance annotation usability by semantically filtering less
important visualization grids through an automated pipeline.
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