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Fig. 1: Gaze prediction performance of our model (DGaze) in different scenes. The upper row shows some captured images from
an HMD’s screen and the lower row exhibits the corresponding enlarged view. The green cross denotes the ground truth of gaze
position, the blue cross is generated using SGaze [21] algorithm, and the red cross represents the result of our novel algorithm,
DGaze. The green circle illustrates the foveal region with radius 15◦. In practice, our gaze prediction algorithm exhibits higher
accuracy than prior method.

Abstract—We conduct novel analyses of users’ gaze behaviors in dynamic virtual scenes and, based on our analyses, we present a
novel CNN-based model called DGaze for gaze prediction in HMD-based applications. We first collect 43 users’ eye tracking data in
5 dynamic scenes under free-viewing conditions. Next, we perform statistical analysis of our data and observe that dynamic object
positions, head rotation velocities, and salient regions are correlated with users’ gaze positions. Based on our analysis, we present
a CNN-based model (DGaze) that combines object position sequence, head velocity sequence, and saliency features to predict
users’ gaze positions. Our model can be applied to predict not only realtime gaze positions but also gaze positions in the near future
and can achieve better performance than prior method. In terms of realtime prediction, DGaze achieves a 22.0% improvement over
prior method in dynamic scenes and obtains an improvement of 9.5% in static scenes, based on using the angular distance as the
evaluation metric. We also propose a variant of our model called DGaze ET that can be used to predict future gaze positions with
higher precision by combining accurate past gaze data gathered using an eye tracker. We further analyze our CNN architecture and
verify the effectiveness of each component in our model. We apply DGaze to gaze-contingent rendering and a game, and also present
the evaluation results from a user study.
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1 INTRODUCTION

With the development of virtual reality (VR) technology, users’ gaze
information in VR becomes increasingly important and can be used for
different applications, including VR content design [39], VR content
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compression [39], eye movement-based interaction [14, 29, 34, 43],
gaze behavior analysis [2, 4, 20, 21, 39], gaze-contingent rendering (or
foveated rendering) [18, 33, 41, 42], etc. Currently, the most common
solution for eye tracking is based on hardware-based eye trackers.
Eye trackers are accurate and can be integrated with head mounted
devices (HMDs). However, as an accessory equipment of an HMD,
an eye tracker can be costly and lacks ease of use. Moreover, eye
trackers are mainly used to measure the current gaze direction, and
they cannot directly predict the future gaze position. Therefore, there is
considerable interest in developing alternate methods for eye tracking
and gaze prediction [21, 39, 45].

Human gaze behaviors in dynamic scenes are more intricate than
that in static scenes because users’ attention will be attracted not only
by static stimuli but also by moving stimuli [1, 17]. In VR applications,
dynamic scenes are much more common than static scenes. However,
currently, many studies have focused on static scenes [21, 36, 39] while
dynamic scenes have not been well explored. Therefore, it is very
meaningful to analyze human gaze behaviors in dynamic scenes. One



of our goals is to analyze the gaze behavior for dynamic scene and use
that behavior to design better prediction algorithms.

Our model is formulated based on the following procedures:
Gaze Data Collection: We record users’ eye tracking data in dy-

namic scenes to analyze their gaze behaviors. Specifically, a total of 43
participants are asked to freely explore 5 dynamic virtual scenes includ-
ing both indoor and outdoor scenes (See Fig. 2) and the participants are
given no specific task. We collect users’ data from the eye tracker to
build a dataset. Our dataset includes 86 pieces of data from 43 users
and each piece of data contains about 18,000 gaze positions, 18,000
object positions, 36,000 head velocities, and 10,800 frames of scene
screenshots. The dataset has been released for public usage1.

Gaze Behavior Analysis: We further analyze users’ gaze behav-
iors based on our dataset. Specifically, we perform Spearman’s rank
correlation analysis [30] on the dataset and find that users’ gaze posi-
tions are correlated with their head rotation velocities and the positions
of dynamic objects. We also extract the saliency maps of the images
viewed by observers and find that gaze positions correspond with salient
regions. The above results reveal that head velocity, dynamic object
position, and saliency feature facilitate the task of gaze prediction. The
effectiveness of each component is further validated in our ablation
study (Sect. 6.4). In addition, we analyze the distribution of users’ gaze
data and find that most of the gaze positions lie in the central region of
the HMD’s screen.

Novel CNN-Based Model: Based on our analyses, we propose
a CNN-based model (DGaze) to predict gaze positions. Our model
consists of three modules: sequence encoder module, saliency encoder
module, and gaze prediction module. The sequence encoder module
employs a 1D CNN layer to encode the object position sequence and
the head velocity sequence. The saliency encoder module applies the
state-of-the-art SAM-ResNet saliency predictor [13] to extract saliency
features of the past images and utilizes a fully connected (FC) layer to
encode the features. The gaze prediction module combines the outputs
of the 2 modules and employs 3 FC layers to predict gaze positions.
When an eye tracker is available, the sequence of past gaze data can
also be used in the sequence encoder module to improve our model’s
performance. We refer to this revised model as DGaze ET as it utilizes
the data gathered using an eye tracker. We utilize 60% of our dataset
(1045654 data points) to train the model and employ the remaining data
(698304 data points) to test. The effectiveness of our CNN architecture
is further validated (Sect. 6.4). The source code of our model and the
pre-trained models are publicly available1.

Evaluation of DGaze: We utilize the angular distance between the
ground truth and the predicted gaze position as the evaluation metric
(Sect. 6.1.2). DGaze achieves good realtime prediction performance
on both dynamic (an improvement of 22.0% over prior method) and
static datasets (9.5% improvement). DGaze can also be applied to
predict gaze positions at any specified future time (0∼1000 ms). When
an eye tracker is provided, DGaze ET can take advantage of accurate
past gaze data to achieve higher performance. We apply DGaze to
gaze-contingent rendering and conduct a two-alternative forced choice
(2AFC) test to verify its effectiveness. Compared with prior method,
DGaze is preferred by 68.9% of the users’ responses and the result is
statistically significant. We also apply DGaze to a game to evaluate
its effectiveness and the result shows that DGaze outperforms prior
method by 14.3% in terms of realtime prediction.

Overall, our contributions include:

• A novel CNN-based model (DGaze) for realtime and future gaze
prediction in immersive HMD-based applications with high accu-
racy.

• Analyses of human gaze behaviors in dynamic virtual scenes that
provide insights into formulating gaze prediction models.

• A dataset that contains 43 users’ eye tracking data that is gathered
using five dynamic scenes.

1cranehzm.github.io/DGaze

2 RELATED WORK

In this section, we give a brief overview of prior works on gaze pre-
diction, gaze behavior analysis, and the applications of eye tracking
technology.

2.1 Gaze Prediction
In the area of vision research, gaze prediction or visual saliency pre-
diction has been well-studied and many gaze prediction models have
been proposed in the last three decades. Generally, most of the existing
models are based on bottom-up approaches, top-down approaches, or
hybrid approaches. Bottom-up approaches employ low-level image
features such as intensity, color, and orientation to predict visual at-
tention [10, 24] while top-down approaches take high-level features
of the scene like specific tasks and context into consideration [8, 19].
Hybrid approaches combine low-level features and high-level features
to obtain better performance [7, 32]. Recently, with advances in deep
learning, many deep learning-based models have been proposed and
have achieved good performances [13, 26].

However, there is limited work on gaze prediction in the area of
virtual reality. Sitzmann et al. [39] and Rai et al. [36] both focused
on saliency in 360◦ static images. They collected users’ eye tracking
data and predicted saliency maps of the scenes. Xu et al. [45] built a
dataset that contains observers’ gaze data in dynamic 360◦ videos and
proposed a deep learning-based model for gaze displacement prediction.
Koulieris et al. [25] predicted gaze object categories in a video game.
Our approach is also related to the recent work on SGaze [21]. Hu et
al. gathered the data of a large number of participants freely exploring
static virtual scenes and proposed an eye-head coordination model
called SGaze for predicting users’ realtime gaze positions. In contrast
with Hu et al.’s work, we focus on dynamic scenes and predict not only
realtime gaze positions but also future gaze positions.

2.2 Gaze Behavior Analysis
There is some work on the analysis of human gaze behaviors. Itti [23]
reported that human gaze behaviors are controlled by both a bottom-up
mechanism and a top-down mechanism, which means visual attention
is influenced not only by the content humans see but also by the tasks
assigned to them. Pinto et al. [35] further revealed that the two mecha-
nisms are independent. Baloh et al. [3] discovered many differences
between horizontal and vertical eye movements and Rottach et al. [37]
showed evidence for independent feedback control of horizontal and
vertical saccades. Brockmann et al. [9] and Boccignone et al. [6] fo-
cused on gaze shifts and they modeled gaze shifts as a stochastic process.
Franconeri et al. [17] revealed that moving stimuli capture visual at-
tention and they further reported that looming stimuli capture attention
while receding stimuli do not attract attention. The phenomenon that
motion attracts attention was also observed in Abrams et al.’s work [1].
Yarbus [46] found that the eyes and the head move in coordination
during gaze shifts and Einhäuser et al. [15] discovered human eye-head
coordination in natural exploration. Nakashima et al. [31] proposed a
model to improve the accuracy of saliency prediction by utilizing head
direction.

The characteristics of human gaze behaviors in virtual reality have
also been explored. Sitzmann et al. [39] revealed that there exists a
latitudinal equator bias during users’ exploration of 360◦ images. Xu
et al. [45] explored human’s gaze behaviors in dynamic 360◦ videos
and found that users’ gaze positions coincide with salient regions and
moving objects. Hu et al. [21] revealed that, in static virtual scenes,
users’ gaze positions are correlated with their head rotation velocities
and there exists a latency between eye movements and head movements.
Based on the above-mentioned works, to explore huamn gaze behaviors
in dynamic virtual scenes, we record the image sequences viewed by
the observers, users’ gaze positions, users’ head rotation velocities, and
the positions of dynamic objects for analysis.

2.3 Application of Eye Tracking
In VR systems, eye tracking technology has gained importance and
it can be applied to many aspects. Tanriverdi et al. [43] utilized eye
tracking technology as an interaction tool in virtual environments and
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