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HOIMotion

Fig. 1: HOIMotion is a novel method for forecasting human motion during daily human-object interaction activities. The left figure shows
an example of daily pick activity. HOIMotion uses body poses in the past and the 3D bounding boxes of scene objects in the egocentric
view to forecast future human motion and can achieve superior performances over prior methods that only use historical body poses.

Abstract—We present HOIMotion – a novel approach for human motion forecasting during human-object interactions that integrates
information about past body poses and egocentric 3D object bounding boxes. Human motion forecasting is important in many
augmented reality applications but most existing methods have only used past body poses to predict future motion. HOIMotion first
uses an encoder-residual graph convolutional network (GCN) and multi-layer perceptrons to extract features from body poses and
egocentric 3D object bounding boxes, respectively. Our method then fuses pose and object features into a novel pose-object graph and
uses a residual-decoder GCN to forecast future body motion. We extensively evaluate our method on the Aria digital twin (ADT) and
MoGaze datasets and show that HOIMotion consistently outperforms state-of-the-art methods by a large margin of up to 8.7% on ADT
and 7.2% on MoGaze in terms of mean per joint position error. Complementing these evaluations, we report a human study (N=20)
that shows that the improvements achieved by our method result in forecasted poses being perceived as both more precise and more
realistic than those of existing methods. Taken together, these results reveal the significant information content available in egocentric
3D object bounding boxes for human motion forecasting and the effectiveness of our method in exploiting this information.

Index Terms—Human motion forecasting, human-object interaction, graph convolutional network, augmented reality

1 INTRODUCTION

Understanding and analysing human behaviour is a long-standing re-
search challenge in virtual (VR) and augmented reality (AR) and is
considered a crucial component for future human-aware intelligent
VR/AR systems [13, 18]. Human motion forecasting in particular has
significant relevance for a number of VR/AR applications including 1)
redirected walking [5] that can redirect a user’s walking path based on
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predicted future trajectories to create the illusion of an unlimited virtual
interaction space; 2) collision avoidance [46] that can avoid potential
collision between two users or between a user and the physical world by
predicting future human motion and sending out a warning beforehand
if a collision is likely to happen; 3) low-latency interaction [8] that can
prepare the virtual content in advance based on predicted future human
motion to provide users with a low-latency experience; as well as 4)
assistive devices [4] that first predict users’ desired future movements
and then help them to accomplish them.

Human motion forecasting is typically formulated as a pose-focused
sequence-to-sequence task, i.e. the task of using a sequence of past body
poses to predict future poses. This approach works reasonably well
given that human behaviour, particularly during procedural or repetitive
tasks, has rich internal structure and consists of characteristic, and
thus predictable, sequences of actions. Human motion, however, is also
closely linked to the environment, especially during daily human-object
interaction (HOI) activities. For example, as illustrated in Figure 1,
if a user wants to pick up an object on the table, their body motion
trajectories are strongly influenced by the location of the table while
their arm movements are highly correlated with the specific position
of the target object. Inspired by the close link between human motion
and scene objects, in this work we explore the potential of using infor-
mation on scene objects to improve motion forecasting. To ensure the



generalisability in various VR/AR scenarios, we propose to only use
egocentric 3D object bounding boxes since such information is readily
available in VR/AR systems [6, 18, 39].

Information on human body pose and egocentric 3D object bounding
box are so different that we cannot directly integrate them into exist-
ing methods, whose architectures are designed to only model human
motion [12, 30, 34, 35].To solve this problem, we present HOIMotion –
a novel graph convolutional network-based (GCN-based) encoder-
residual-decoder architecture that can efficiently combine historical
body poses and egocentric 3D object bounding boxes to forecast human
motion in the future. Our method first uses an encoder-residual GCN
and multi-layer perceptrons (MLPs) to extract pose and object features
respectively. These features are fused into a novel pose-object graph
and a residual-decoder GCN is applied to forecast future body motion
from the pose-object graph. We extensively evaluate our method at
different future time horizons of up to 1 second (future 30 frames)
on the Aria digital twin (ADT) dataset [38] for AR setting as well
as on the MoGaze dataset [26] for real-world setting. Experimental
results demonstrate that our method consistently outperforms several
state-of-the-art methods that only use past body poses by a large mar-
gin, achieving an average improvement of 8.7% on ADT and 7.2%
on MoGaze in terms of mean per joint position error (MPJPE). Using
only past body poses as input, our method can achieve an average
improvement of 5.3% on ADT and 3.7% on MoGaze, validating the
effectiveness of our architecture. To qualitatively evaluate our method,
we further conduct a user study and the responses from 20 users vali-
date that our predictions are perceived as both more precise and more
realistic than predictions of prior methods1.

The specific contributions of our work are three-fold:

• We demonstrate the effectiveness of egocentric 3D object bound-
ing boxes for motion forecasting, providing a new perspective for
this challenging task.

• We propose a novel GCN-based encoder-residual-decoder archi-
tecture that uses an encoder-residual GCN and MLPs to extract
pose and object features respectively, fuses these features into a
pose-object graph, and applies a residual-decoder GCN to forecast
future motion.

• We report extensive experiments on two public datasets for fore-
casting human motion at different future time horizons and demon-
strate significant performance improvements over state of the art
and report a user study that shows our method achieves superior
performances over prior methods in both precision and realism.

2 RELATED WORK

2.1 Human Behaviour Modelling

Understanding and modelling human behaviours is a long-standing
research challenge in the areas of virtual and augmented reality [1, 3,
21, 23, 40, 44] and is considered a significant component for future
human-aware intelligent VR/AR systems [13, 18]. Many researchers
focused on visual attention modelling in virtual reality. Specifically,
Sitzmann et al. modelled human visual saliency on 360-degree VR
images and proposed to combine human head orientation to predict
saliency map in VR [41]. Hu et al. focused on human gaze behaviours
in VR and proposed several eye-head coordination models to predict
eye gaze positions in free-viewing [20, 22] and task-oriented virtual en-
vironments [18]. Some researchers concentrated on modelling human
cognitive load in virtual environments [9,43]. For example, Tremmel et
al. proposed to use electroencephalogram features to estimate cognitive
load in an interactive virtual environment [43] while Dell’Agnola et al.
extracted features from different physiological signals to detect the lev-
els of cognitive load [9]. Hu et al. analysed different human activities in
VR and proposed to use human eye and head movements to recognise
user activities [19]. Kim et al. developed an electroencephalography-
driven model to predict the degree of cybersickness in virtual environ-

1Source code and trained models will be released upon acceptance.

ments [24]. In this work, we focused on human motion modelling,
specifically predicting human full-body motion in the future.

2.2 Human Motion Forecasting
Human motion forecasting is a significant research topic in the area of
human-centred computing and has great relevance for many VR/AR ap-
plications. Early works usually employed traditional machine learning
methods to model human motion. Specifically, Wang et al. employed
Gaussian process models to learn an effective representation of human
motion data [45], Taylor et al. used a restricted Boltzmann machine
to model the probability distribution of human body poses [42], while
Lehrmann et al. proposed to model human motion through hidden
Markov models [28]. While these early methods are useful for simple
motions, they are less effective for forecasting more complex and long-
term motion sequences [11]. Recently, with the rapid development of
deep learning technology, many deep learning-based methods have been
proposed to model human body motion. Considering the sequential
structure of human motion, many researchers have explored to forecast
human future motion using recurrent neural networks (RNNs) and have
achieved superior performances over traditional methods [11, 27, 35].
In addition to RNNs, Transformers have also been applied to this task
and have achieved good results [2,34]. More recently, some researchers
explored to forecast human motion using graph convolutional networks
in light of the fact that human body pose can be viewed as a graph
by treating each body joint as a graph node [7, 30]. To reduce the
network complexity, multi-layer perceptrons have been proposed as a
light-weight motion forecasting solution [12]. Existing motion forecast-
ing methods typically only focused on human motion itself, forecasting
future body poses using only historical poses. Recent work on offline
human motion synthesis used the features from a global 3D scene point
cloud to synthesise human motion [31, 46]. However, such features
are difficult to acquire in many real application scenarios, especially
in augmented or mixed reality settings, thus limiting the usefulness of
these methods in real-day life outside clearly defined environments. In
contrast with previous work, in this work we focus on real-time motion
forecasting and combine body poses in the past and information on
egocentric 3D object bounding boxes, which is readily available in
VR/AR systems, to predict human motion in the future.

2.3 Human-object Interaction
Human-object interaction is a crucial interaction paradigm in virtual
and augmented reality [15–17, 37]. Recent research has revealed the
strong correlation between human behaviours and the scene objects
during daily human-object interaction activities. Specifically, Hu et al.
studied the visual search setting where users were required to search
for a specific target object among many distractors and found that both
the target and distractors have a strong influence on human gaze be-
haviours [18]. Li et al. revealed that users’ spatial memory of the scene
content influences their visual search strategies in large-scale immersive
virtual environments [29]. David-John et al. found that during an item-
selection activity in virtual reality human eye gaze is closely linked with
the items that users intend to select [8]. Koulieris et al. revealed that
during the process of game play, player actions are highly correlated
with the present states of the game-related objects [25]. Emery et al.
investigated open-ended VR games that covered various HOI activities
such as shooting and object manipulation and revealed that human
eye, head, and hand movements are strongly linked with the scene
objects [10]. Inspired by the close link between human behaviours and
scene objects, in this work we introduce to use information on scene
objects to forecast human motion during human-object interactions.

3 METHOD

3.1 Problem Definition
We define egocentric scene object-aware human motion forecasting
as the task of predicting a sequence of future body poses jointly from
historical body poses and information on scene objects in the ego-
centric view. We use the 3D positions of all human body joints to
represent body pose p ∈ R3×n, where n is the number of joints. We
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Fig. 2: Our method for egocentric scene object-aware human motion forecasting uses an encoder GCN and a pose residual GCN to extract features
from historical body poses and employs three MLPs to respectively extract features from head orientations, and the bounding boxes of static and
dynamic scene objects in the egocentric view. The pose, head, and object features are fused into a novel pose-object graph and a fuse residual
GCN and a decoder GCN are applied to forecast future body motion from the pose-object graph.

represent scene objects using their bounding boxes given that the bound-
ing box information can be easily and efficiently accessed in VR/AR
systems and is highly relevant to human motion. Specifically, we
use the 3D positions of the bounding box’s eight vertices to represent
scene objects o ∈ R3×8×m, where m is the number of objects. Con-
sidering that a user’s egocentric viewport is determined by their head
orientation in VR/AR systems, we also introduce to use human head
orientation h ∈ R3 in this task, where h is a unit vector indicating
head forward direction. Given a sequence of historical body poses
P1:t = {p1, p2, ..., pt}, head orientations H1:t = {h1,h2, ...,ht}, and
scene objects O1:t = {o1,o2, ...,ot}, the task is to forecast body poses
in the future Pt+1:T = {pt+1, pt+2, ..., pT }. The core of our method is
a GCN-based encoder-residual-decoder architecture. An encoder GCN
and a pose residual GCN are used to extract features from historical
body poses while MLPs are employed to extract features from head
orientations and scene objects. The pose, head, and object features
are fused into a novel pose-object graph, and a fuse residual GCN and
a decoder GCN are applied to forecast future body motion from the
pose-object graph (see Figure 2 for an overview of our method).

3.2 Pose Feature Extraction

To cover the future time horizon that we want to predict, we first padded
the historical body poses P1:t ∈ R3×n×t from a temporal length of t to
T by repeating the last observed pose pt for T − t times following prior
works [30, 33]. We applied discrete cosine transform (DCT) to encode
the padded body poses P ∈ R3×n×T in the temporal domain in light of
the good performance of DCT for encoding time series data [30, 32]:

Pdct = PMdct , (1)

where Mdct ∈ RT×T is the DCT matrix and Pdct ∈ R3×n×T is the trans-
formed body poses. We further proposed two GCN blocks, i.e. an
encoder GCN block and a pose residual GCN block, to extract features
from the transformed body pose data.

Encoder GCN The encoder GCN block aims at mapping the body
pose data from its original space into a latent feature space. This block
first employs a temporal GCN (T-GCN) to extract temporal features
from the transformed pose data Pdct . The T-GCN views the body
pose data as a fully-connected temporal graph that contains T nodes
corresponding to T time steps of the pose data. The core of the T-GCN
is a weighted adjacency matrix AT ∈ RT×T that learns the correlations
between different temporal nodes and performs temporal convolution

on the pose data:
ftemp = PdctA

T . (2)

ftemp ∈ R3×n×T was then permuted to ftemp ∈ RT×n×3 and a weight
matrix W start ∈ R3×16 was used to map the original node features (3
dimensions) into latent space (16 dimensions):

flat = ftempW start , (3)

where flat ∈ RT×n×16 represents the latent features. After the weight
matrix, a spatial GCN (S-GCN) was employed to extract spatial features
from the pose data. The S-GCN views the body pose data as a full-
connected spatial graph that contains n nodes corresponding to n human
body joints. The core of the S-GCN is a weighted adjacency matrix
AS ∈ Rn×n that learns the link between different spatial nodes and
performs spatial convolution on the pose data:

fspa = AS flat . (4)

fspa ∈ RT×n×16 was further permuted to fspa ∈ R16×n×T for further
processing.

Pose Residual GCN The pose residual GCN block is designed to
further enhance the body pose features. It first copies the body pose fea-
tures along the temporal dimension (R16×n×T → R16×n×2T ) to enhance
the temporal features [30]. It then applies eight GCN components to
further process the body pose data. Each GCN component contains a
temporal GCN that learns the temporal features using the temporal adja-
cency matrix AT ∈ R2T×2T , a weight matrix W res ∈ R16×16 that learns
latent features, a spatial GCN that extracts spatial features through the
spatial adjacency matrix AS ∈ Rn×n, a layer normalisation (LN), a Tanh
activation function, as well as a dropout layer with a dropout rate of 0.3
to prevent the GCN from overfitting. A residual connection was added
for each GCN component to improve the network flow. The output of
the pose residual GCN block was cut in half in the temporal dimension
to obtain the body pose features fpose ∈ R16×n×T that maintain the
same temporal length as the original input to this block.

3.3 Head Feature Extraction
We first padded the historical head orientations H1:t ∈ R3×t to a tempo-
ral length of T by repeating the last observed head orientation ht for
T − t times. A DCT is then applied to encode the head orientations
in the temporal domain. We further used a multi-layer perceptron to



process the head orientations given the effectiveness of MLP for encod-
ing the sequences of human behaviour data [19, 20]. The MLP aims at
mapping the head features (3 dimensions) at each time step into latent
space (16 dimensions). Specifically, we used three linear layers with
128, 128, 16 neurons respectively to extract features from head orienta-
tions. The first two linear layers were followed by a layer normalisation,
a Tanh activation function, as well as a dropout layer with a dropout
rate of 0.5 to avoid overfitting while a layer normalisation and a Tanh
activation function were employed after the third linear layer. Through
the multi-layer perceptron, we obtained the processed head orientation
features fhead ∈ R16×T .

3.4 Object Feature Extraction

Considering that different type of objects may have different influ-
ences on human motion during human-object interaction activities, we
grouped the scene objects into two categories, i.e. dynamic and static
objects, following prior work on object segmentation [38]. Dynamic
objects refer to the objects that users can manipulate to change their
positions during an HOI activity, e.g. the cup and jug in Figure 1, while
static objects denote the objects that are stationary throughout the HOI
activity, e.g. the table and chair in Figure 1. An environment may con-
tain plenty of scene objects, many of which may have little influence
on human body motion. To improve our method’s efficiency, we only
used the scene objects that were located in the central region of users’
viewport since these central objects are more likely to influence human
behaviours [20,22,41]. Specifically, at each time step we calculated the
angular distance between the centre of each scene object and the centre
of the viewport and ranked the dynamic and static objects respectively
based on their angular distances from the viewport centre. We then
selected the two dynamic objects D1:t = {d1,d2, ...,dt} ∈ R3×8×2×t

and two static objects S1:t = {s1,s2, ...,st} ∈ R3×8×2×t that are closest
to the viewport centre and used their bounding box information for
motion forecasting.

To cover the predicted future time horizon, we padded the object
information to a temporal length of T by respectively repeating the
last observed objects dt and st for T − t times. We then applied a
DCT to encode the scene objects in the temporal domain and further
used two MLPs to extract features from dynamic and static objects
respectively. The two MLPs have the same structure and are designed
to map the object features (3× 8× 2 dimensions) at each time step
into latent space (16 dimensions). Each MLP contains three linear
layers with 128, 128, 16 neurons respectively. A layer normalisation, a
Tanh activation function, and a dropout layer with a dropout rate of 0.5
were applied after the first two linear layers while the third linear layer
was followed by a layer normalisation and a Tanh activation function.
Through the two MLPs, we obtained the processed features of both
dynamic objects fdynamic ∈ R16×T and static objects fstatic ∈ R16×T .

3.5 Pose-object Fusion

After the feature extraction process, we obtained the body pose fea-
tures fpose ∈ R16×n×T , head orientation features fhead ∈ R16×T , dy-
namic object features fdynamic ∈ R16×T , as well as static object features
fstatic ∈ R16×T . To enhance the head and object features, we respec-
tively repeated the head and object features for four times along the
spatial domain and obtained fhead ∈ R16×5×T , fdynamic ∈ R16×5×T , and
fstatic ∈ R16×5×T . We then concatenated the pose, head, and object
features along the spatial domain and obtained f ∈ R16×(n+15)×T . To
fuse different features for motion forecasting, we proposed a novel
spatio-temporal pose-object graph: the temporal graph covers T nodes
that correspond to the features at T time steps while the spatial graph
contains n+15 nodes corresponding to the features of the body joints
(n nodes), head orientations (5 nodes), dynamic objects (5 nodes), and
static objects (5 nodes). Both the temporal and spatial graphs are
fully-connected with their adjacency matrices measuring the weights
between each pair of nodes.

3.6 Motion Forecasting
We further employed a fuse residual GCN block and an end GCN block
to forecast future body poses from the pose-object graph.

Fuse Residual GCN The fuse residual GCN block aims at enhanc-
ing the fused pose-object features. It first copies the pose-object features
along the temporal dimension (R16×(n+15)×T → R16×(n+15)×2T ) to en-
hance the temporal features and then applies 16 GCN components to
further process the pose-object data. Each GCN component consists of
a temporal GCN that learns the temporal features using the temporal ad-
jacency matrix AT ∈R2T×2T , a weight matrix W res ∈R16×16 that learns
latent features, a spatial GCN that extracts spatial features through the
spatial adjacency matrix AS ∈ R(n+15)×(n+15), a layer normalisation,
a Tanh activation function, and a dropout layer with a dropout rate
of 0.3 to avoid overfitting. A residual connection was added for each
GCN component to improve the network flow. We cut the output of
the fuse residual GCN block in half in the temporal dimension to main-
tain the same temporal length as the original input and obtained the
spatio-temporal pose-object features f ∈ R16×(n+15)×T .

Decoder GCN The decoder GCN block is employed to map the
processed pose-object features from latent feature space to the original
space. The decoder GCN consists of a temporal GCN that learns
the temporal adjacency matrix, a weight matrix W end ∈ R16×3 that
maps the latent features to three dimensions, and a spatial GCN that
learns the spatial adjacency matrix. The output of the decoder GCN
Yd ∈ R3×(n+15)×T was converted back to the original representation
space using an inverse discrete cosine transform (IDCT) matrix Midct ∈
RT×T :

Y = YdMidct . (5)

We finally added a global residual connection between the pose input
and the output of IDCT to obtain the predicted future poses P̂t+1:T ∈
R3×n×T−t .

3.7 Loss Function
To ensure the precision and smoothness of our predictions, we em-
ployed a combination of motion loss ℓm and velocity loss ℓv as our loss
function ℓ:

ℓ= ℓm + ℓv. (6)

ℓm is designed to measure our method’s precision by calculating the
mean per joint position error between the ground truth and the predicted
future poses [30, 32]:

ℓm =
1

n(T − t)

T

∑
i=t+1

n

∑
j=1

∥pi, j − p̂i, j∥2, (7)

where pi, j ∈ R3 represents the ground truth 3D coordinates of the jth

joint at the future time of i while p̂i, j ∈ R3 is the prediction of our
method. ℓv aims at measuring the smoothness of our predictions by
computing the mean per joint velocity error between the ground truth
and the predicted future poses [12]:

ℓv =
1

n(T − t −1)

T−1

∑
i=t+1

n

∑
j=1

∥vi, j − v̂i, j∥2, (8)

where vi, j ∈ R3 is the ground truth pose velocity and v̂i, j ∈ R3 rep-
resents the predicted pose velocity. The velocity is computed using
the difference between two adjacent poses: vi, j = pi+1, j − pi, j and
v̂i, j = p̂i+1, j − p̂i, j.

4 EXPERIMENTS AND RESULTS

In this section, we conducted extensive experiments to evaluate our
method’s motion forecasting performance. Specifically, we first com-
pared our method with the state-of-the-art methods that only use his-
torical body poses on an AR dataset as well as on a real-world dataset.
We further performed extensive ablation studies to validate the effec-
tiveness of each component used in our method. We finally conducted
a user study to qualitatively evaluate our method.



Table 1: Mean per joint position errors (unit: millimeters) of different methods for motion forecasting on the ADT and MoGaze datasets. Results are
shown for different future time horizons of up to 1 second. Best results are in bold. Our method consistently outperforms prior methods in terms of
average performance as well as performances at different time intervals. Even using only historical body poses as input, our method still achieves
significantly better performances over prior methods.

Action Method 100 ms 200 ms 300 ms 400 ms 500 ms 600 ms 700 ms 800 ms 900 ms 1000 ms Average

ADT-work

Res-RNN [35] 28.4 38.7 47.8 58.1 67.3 76.7 85.9 95.1 104.2 113.1 69.1
siMLPe [12] 26.0 28.4 33.2 39.8 47.9 55.1 62.5 71.4 79.4 89.4 51.2
HisRep [34] 6.9 12.8 18.8 24.8 31.0 37.4 44.1 50.9 57.8 65.3 32.8
PGBIG [30] 8.2 13.5 19.2 24.9 30.9 37.2 43.6 50.1 57.0 64.5 32.9

Ours pose only 5.1 10.4 16.1 22.2 28.6 35.3 42.3 49.5 56.9 64.6 30.9
Ours 4.9 10.0 15.6 21.6 27.8 34.3 41.1 48.0 55.2 62.5 30.0

ADT-decoration

Res-RNN [35] 22.5 33.4 46.2 59.7 73.5 87.4 101.5 115.6 129.8 144.2 77.4
siMLPe [12] 27.2 33.6 44.6 56.7 70.6 85.4 101.2 118.5 136.9 156.6 78.7
HisRep [34] 10.5 19.2 27.9 37.2 47.5 58.8 71.3 84.9 99.0 114.4 53.2
PGBIG [30] 10.2 18.7 27.0 35.7 45.5 56.5 68.6 81.9 96.2 111.7 51.5

Ours pose only 6.9 14.2 22.5 32.0 42.6 54.4 67.2 81.1 95.6 110.9 49.0
Ours 6.6 13.5 21.5 30.6 40.8 52.2 64.7 77.8 91.6 105.7 46.9

ADT-meal

Res-RNN [35] 18.7 27.8 39.3 52.0 65.4 79.6 94.5 110.0 125.8 141.9 71.5
siMLPe [12] 26.7 29.9 37.0 46.2 57.1 68.4 81.1 94.9 108.2 122.7 63.9
HisRep [34] 8.0 15.0 22.4 30.4 39.1 48.6 58.6 69.2 80.0 91.3 43.2
PGBIG [30] 8.5 15.2 22.2 29.7 38.0 47.1 56.8 67.0 77.9 89.7 42.3

Ours pose only 5.6 11.6 18.6 26.6 35.4 44.9 55.2 66.1 77.4 89.0 40.0
Ours 5.3 11.2 18.0 25.8 34.4 43.8 53.8 64.2 75.1 86.2 38.9

ADT-all

Res-RNN [35] 23.7 33.9 44.8 56.8 68.6 80.8 93.1 105.7 118.3 131.1 72.3
siMLPe [12] 26.6 30.4 37.8 46.8 57.5 68.2 79.7 92.5 105.3 119.5 63.2
HisRep [34] 8.3 15.4 22.6 30.2 38.4 47.2 56.6 66.6 76.8 87.8 42.0
PGBIG [30] 8.9 15.5 22.4 29.6 37.4 46.0 55.0 64.7 75.0 86.2 41.3

Ours pose only 5.8 11.9 18.8 26.4 34.8 43.9 53.6 63.9 74.7 85.8 39.1
Ours 5.5 11.4 18.1 25.6 33.7 42.5 52.0 61.8 72.0 82.5 37.7

MoGaze-pick

Res-RNN [35] 36.1 50.1 67.9 88.1 110.6 135.1 161.3 189.1 218.1 248.0 123.6
siMLPe [12] 27.4 37.7 51.5 67.4 84.7 103.8 125.1 147.4 171.2 196.1 95.4
HisRep [34] 14.7 27.7 41.1 55.8 72.1 90.1 109.6 130.3 151.9 174.1 80.9
PGBIG [30] 13.9 26.3 39.2 53.3 69.4 87.0 105.8 125.8 146.8 168.0 78.0

Ours pose only 12.2 23.7 36.4 50.4 66.2 83.6 102.4 122.0 142.5 163.4 74.8
Ours 11.3 22.6 34.9 48.8 64.3 81.3 99.8 119.1 139.1 159.3 72.7

MoGaze-place

Res-RNN [35] 42.9 58.6 77.1 97.0 118.1 140.1 162.4 184.5 206.4 227.6 125.6
siMLPe [12] 31.3 45.9 62.8 80.3 98.3 118.0 139.6 162.1 185.5 210.0 107.1
HisRep [34] 21.6 38.3 53.4 69.3 86.5 105.2 124.8 144.6 164.5 184.9 93.2
PGBIG [30] 19.9 35.2 50.1 65.8 82.8 101.1 120.1 139.6 159.0 177.9 89.3

Ours pose only 18.0 32.8 47.7 63.4 80.4 98.4 117.0 135.9 155.2 174.4 86.6
Ours 16.7 31.1 45.6 60.9 77.1 94.2 111.9 129.9 148.0 165.5 82.6

MoGaze-all

Res-RNN [35] 38.5 53.1 71.1 91.3 113.2 136.8 161.7 187.5 214.0 240.8 124.3
siMLPe [12] 28.8 40.6 55.5 72.0 89.4 108.8 130.2 152.6 176.3 201.0 99.5
HisRep [34] 17.1 31.4 45.4 60.5 77.1 95.4 115.0 135.3 156.4 177.9 85.3
PGBIG [30] 16.0 29.4 43.0 57.7 74.1 92.0 110.8 130.7 151.1 171.5 82.0

Ours pose only 14.3 26.9 40.4 55.0 71.2 88.8 107.5 126.9 147.0 167.3 79.0
Ours 13.2 25.6 38.6 52.9 68.7 85.7 103.9 122.7 142.0 161.3 76.1

4.1 Datasets
To test our method’s generalisation capability for different settings, we
evaluated our method on two public datasets including an AR dataset
(Aria digital twin [38]) and a real-world dataset (MoGaze [26]).

ADT dataset [38] The Aria digital twin dataset is collected in
two indoor environments (an apartment and an office environment)
with simulated scene objects and contains human pose data performing
various human-object interaction activities including room decoration,
meal preparation, and work. Each human pose consists of the 3D
coordinates of 21 human joints recorded at 30 Hz. The bounding box
information and motion type (dynamic or static) of the scene objects
are also provided. For experiments on ADT, we randomly selected 24
sequences for training and 10 sequences for testing.

MoGaze dataset [26] The MoGaze dataset is collected in a real-
world indoor environment and contains human motion data recorded at
120 Hz from six people performing daily pick and place activities. The
bounding box information and motion type (dynamic or static) of the
scene objects are also recorded at 120 Hz. We down-sampled the human
pose and object data to 30 Hz for simplicity [12, 30] and represented
human poses using the 3D coordinates of 21 human joints. To evaluate
motion forecasting on MoGaze, we used a leave-one-person-out cross-
validation: We trained on five participants from scratch and tested on
the remaining one, repeated the experiment six times with a different

participant for testing, and calculated the average performance across
all six iterations.

4.2 Evaluation Settings

Evaluation Metric As is common in human motion forecast-
ing [12, 30, 46], we used the mean per joint position error (see Equa-
tion 7) in millimeters as our metric to evaluate different motion fore-
casting methods.

Baselines We compared our method with the following methods
because they are not only prior state-of-the-art motion forecasting
methods but also representatives of different network architectures, i.e.
RNN, MLP, Transformer, and GCN:
• Res-RNN [35]: Res-RNN is a RNN-based method that applies a resid-

ual connection between the input pose and output pose to improve
performance.

• siMLPe [12]: siMLPe is a light-weight MLP-based method that
applies discrete cosine transform and residual connections to improve
performance.

• HisRep [34]: HisRep is a Transformer-based method that extracts
motion attention to capture the similarity between the current motion
context and the historical motion sub-sequences.

• PGBIG [30]: PGBIG is a GCN-based method that employs a multi-
stage framework to forecast human motions where each stage predicts



Table 2: Mean per joint position errors (unit: millimeters) of different ablated versions of our method for motion forecasting on the MoGaze dataset.
Best results are in bold. Our method significantly outperforms the ablated versions, validating the effectiveness of each component used in our
method.

Method 100 ms 200 ms 300 ms 400 ms 500 ms 600 ms 700 ms 800 ms 900 ms 1000 ms Average
w/o static 13.8 26.3 39.7 54.3 70.2 87.2 105.3 124.1 143.4 162.6 77.3

w/o dynamic 13.8 26.2 39.6 54.1 69.9 86.9 105.0 123.9 143.2 162.4 77.1
w/o static+dynamic 13.9 26.6 40.0 54.5 70.5 87.8 106.0 124.9 144.3 163.9 77.8

w/o head 13.7 26.2 39.5 54.2 70.1 87.2 105.2 124.1 143.6 163.0 77.2
w/o static+dynamic+head 14.3 26.9 40.4 55.0 71.2 88.8 107.5 126.9 147.0 167.3 79.0

Ours 13.2 25.6 38.6 52.9 68.7 85.7 103.9 122.7 142.0 161.3 76.1

an initial guess for the next stage.

Time Horizons of Input and Output Sequences For experi-
ments on the ADT and MoGaze datasets (30 Hz), we used 10 frames of
data as input to forecast human poses in the future 30 frames (i.e. up to
one second into the future), following the common evaluation settings
for motion forecasting [30, 34].

Implementation Details We trained the baseline methods from
scratch using their default parameters. For our motion forecasting
network, we used the Adam optimiser with an initial learning rate of
0.01 and decayed the learning rate by 0.95 every epoch. A batch size of
32 was employed to train the motion forecasting network for 80 epochs.
Our method was implemented using the PyTorch framework.

4.3 Motion Forecasting Results
Results on ADT Table 1 summarises the motion forecasting per-

formances of different methods on individual actions (ADT-work, ADT-
decoration, ADT-meal), and on all actions (ADT-all). The table shows
the average MPJPE error (in millimeters) over all 30 frames as well as
the prediction errors for different future time horizons: 100 ms, 200 ms,
. . . , 1000 ms. As can be seen from the table, our method consistently
outperforms the state-of-the-art methods on different actions (work,
decoration, meal, or all). For work, decoration, and meal actions, our
method achieves an average improvement of 8.5% (30.0 vs. 32.8),
8.9% (46.9 vs. 51.5), and 8.0% (38.9 vs. 42.3) respectively in terms
of MPJPE error. For all actions, our method achieves an average im-
provement of 8.7% (37.7 vs. 41.3) over the state of the art. We also
compared the prediction errors of different methods at future 100-1000
ms respectively and observed that our method consistently outperforms
prior methods at all the future time intervals. We further performed
a paired Wilcoxon signed-rank test to compare the performances of
our method with the state of the art and the results validated that the
differences between our method and the state of the art are statistically
significant (p < 0.01). Figure 3 shows an example of the predicted
body poses from different methods on a sample of the ADT dataset.
On this sample, the user is going to squat down to touch an object on
the ground. We can see that our method can accurately predict this
future body motion while prior methods that only use historical body
poses fail to predict this motion. See supplementary video for more
prediction results.

Results on MoGaze The motion forecasting performances of
different methods on individual actions (MoGaze-pick, MoGaze-place)
and on all actions (MoGaze-all) are summarised in Table 1. The table
shows the average MPJPE error (in millimeters) over all 30 frames as
well as the prediction errors for different future time horizons: 100 ms,
200 ms, . . . , 1000 ms. We can see from the table that our method con-
sistently outperforms the state-of-the-art methods on different actions
(pick, place, and all). For pick and place actions, our method achieves
an average improvement of 6.8% (72.7 vs. 78.0) and 7.5% (82.6 vs.
89.3) respectively in terms of MPJPE error. For all actions, our method
achieves an average improvement of 7.2% (76.1 vs. 82.0) over the state
of the art. We also compared our method with prior methods at different
future time horizons and validated that our method can achieve superior
performances at all the future time intervals. A paired Wilcoxon signed-
rank test was further used to compare the performances of our method
with the state of the art and the results validated that the differences

between our method and the state of the art are statistically significant
(p < 0.01).

Using Only Historical Body Poses Considering that prior meth-
ods only used historical body poses as input, for a more fair comparison,
we retrained our method using only body poses and tested on the ADT
and MoGaze datasets. Table 1 summarises the motion forecasting
performances on individual actions as well as on all the actions. We
can see that the ablated version of our method still outperforms prior
methods on both the ADT and MoGaze datasets in terms of average
performance as well as performances at different future time horizons.
For work, decoration, meal, and all actions on the ADT dataset, our
method using only body poses achieves an average improvement of
5.8% (30.9 vs. 32.8), 4.9% (49.0 vs. 51.5), 5.4% (40.0 vs. 42.3), and
5.3% (39.1 vs. 41.3). A paired Wilcoxon signed-rank test was further
used to compare the performances of our method using only body poses
with the state of the art and the results validated that the differences are
statistically significant (p < 0.01). For pick, place, and all actions on
the MoGaze dataset, our method using only body poses achieves an av-
erage improvement of 4.1% (74.8 vs. 78.0), 3.0% (86.6 vs. 89.3), and
3.7% (79.0 vs. 82.0). The differences between our method using only
body poses and the state of the art are statistically significant (paired
Wilcoxon signed-rank test, p < 0.01). The above results validate the
overall superiority of our model architecture.

Time Costs and Model Size Table 4 shows the time costs and
model size of different methods. We can see that our method is of
medium size and is more efficient than prior methods in terms of test
time per batch (10 ms), validating the usefulness of our method in
real-time applications. The time costs were calculated on an NVIDIA
Tesla V100 SXM2 32GB GPU with an Intel(R) Xeon(R) Platinum
8260 CPU @ 2.40GHz.

4.4 Ablation Study
Scene Objects and Head Orientation In addition to historical

body poses, our method also used features from head orientation and
egocentric scene objects. To evaluate the effectiveness of these inputs,
we respectively removed static objects, dynamic objects, static and
dynamic, head orientation, and static, dynamic, and head, and retrained
the ablated methods. Table 2 shows the motion forecasting results of
these ablated methods on the MoGaze dataset. We can see that our
method consistently outperforms the ablated methods in terms of both
average error and errors at different time horizons and the results are
statistically significant (paired Wilcoxon signed-rank test, p < 0.01).
The above results indicate that both scene objects and head orientation
help improve our method’s motion forecasting performance. Figure 4
shows an example of the predicted body poses from different ablated
versions of our method on the MoGaze dataset. We can see that our
method consistently outperforms the ablated versions at different future
time horizons, validating the effectiveness of each component used in
our method.

Scene Object Number In our method, we used the two dynamic
objects and two static objects that are closest to the viewport centre
as our input. We further tested different number of scene objects and
indicated the motion forecasting performances on MoGaze in Table 3.
The scene objects were selected according to their angular distances
to the viewport centre (subsection 3.4). For simplicity, the number



Fig. 3: Visualisation of the prediction results from different methods on a sample of the ADT dataset [38]. Our method can accurately predict the
future body motion of squat down to touch an object while prior methods that only use historical body poses fail to predict this motion.

of static and dynamic objects were kept the same. We can see from
Table 3 that using two dynamic and static objects achieves the best
performances and the differences between different number of scene
objects are statistically significant (paired Wilcoxon signed-rank test,
p < 0.01). We also noticed that using more objects does not boost
the motion forecasting performance, probably because users are more
likely to interact with the objects that are closer to the viewport centre
than the objects in the peripheral region [20, 22, 41] and thus adding
information on peripheral objects cannot improve the performance.

Pose-object Graph In our pose-object graph, we respectively
repeated the head and object features in the spatial domain to obtain
five spatial nodes to enhance these features before fusing them with
the pose features. To evaluate the effectiveness of this strategy, we
further tested different number of spatial nodes and indicated the motion
forecasting performances on MoGaze in Table 3. For simplicity, we
used the same node number for head orientation, static objects, and
dynamic objects. We can see from Table 3 that repeating the features
to obtain five spatial nodes achieves the best performances and the
differences between different number of spatial nodes are statistically
significant (paired Wilcoxon signed-rank test, p < 0.01). We also
noticed that repeating the features in the spatial domain (spatial node
> 1 in Table 3) always performs better than no repeat (spatial node
= 1), validating the effectiveness of the repeat strategy used in our
pose-object fusion process.

Pose and Fuse Residual GCN In our method, we used pose
residual GCNs to enhance the pose features and fuse residual GCNs
to enhance the pose-object features. To evaluate the effectiveness of
these two GCN blocks, we respectively removed these two blocks or
changed the number of GCNs and indicated the motion forecasting
performances on MoGaze in Table 3. We can see that using these
two GCN blocks achieves significantly better performances than not
using them (paired Wilcoxon signed-rank test, p < 0.01), validating
the effectiveness of these two blocks. We also validated that using
eight pose residual GCNs and 16 fuse residual GCNs achieves the best
motion forecasting performance.

4.5 User Study

The results in Section 4.3 have quantitatively validated the effectiveness
of our method. To further evaluate whether our method’s improvements
are significant in terms of human perception, we conducted a user study
to compare our method with prior methods.

4.5.1 Stimuli

We randomly selected 20 motion forecasting samples from the ADT
and MoGaze datasets (10 samples from each dataset) and used them
as our stimuli. Each sample consisted of 30 frames of predictions
(corresponding to future 1 second) and was visualised as a short video.



Fig. 4: Visualisation of different ablated versions of our method on a sample of the MoGaze dataset [26]. Our method consistently outperforms the
ablated versions at different future time horizons.

4.5.2 Participants

We recruited 20 participants (10 males and 10 females, aged between 18
and 50 years, Mean=27.9, SD=6.8) to take part in our user study through
university mailing lists and social networks. All of the participants
reported normal or corrected-to-normal vision. The user study was
approved by our university’s ethical review board.

4.5.3 Procedure

We conducted our user study using a Google form. During the study, the
ground truth future motions and the predictions of different methods
were displayed to the participants in parallel using a layout that is
similar to Figure 3. For simplicity, we only compared our method with
PGBIG [30] and HisRep [34] since they are the strongest baselines from
the results in Table 1. The names of different methods were hidden
and the order of these methods were randomised. The visualisation
videos of the ground truth and different methods were set to loop
automatically, allowing participants to observe them with no time limit.
Before the user study, participants were given detailed instructions
(see the supplementary material) to get familiar with our experimental
setting. During their observation, participants were required to rank
different methods according to two criteria: precision and realism.

• Precision: check different methods to see whether they align with
the ground truth and rank them based on your observation.

• Realism: check different methods to see whether they are physi-
cally plausible and rank them based on your observation.

We collected the responses from all the participants for further analysis.

4.5.4 Statistical Analysis
The medians, means and standard deviations (SDs) of different methods’
rankings are shown in Table 5. We can see that our method outperforms
the state of the art in terms of both precision (Median: 1.0 vs. 2.0,
Mean: 1.2 vs. 2.3) and realism (Median: 1.0 vs. 2.0, Mean: 1.3 vs.
2.2). The results from a paired Wilcoxon signed-rank test validated
that the differences between our method and the state of the art are
statistically significant (p < 0.01). The above results demonstrate
that our method achieves significantly better performances over prior
methods in terms of human perception.

5 DISCUSSION

Significance of Our Method Our method consistently outper-
forms prior methods in terms of average performance as well as per-
formances at different time intervals (Table 1 and Figure 3), and the
differences between our method and the state of the art are statistically
significant (subsection 4.3, paired Wilcoxon signed-rank test, p< 0.01).
The results from a user study further confirm that our improvements
are significant in terms of human perception (subsection 4.5), implying
that our method can be more effective in real applications.

Scene Objects for Motion Forecasting Our method combines
past body poses with egocentric 3D object bounding boxes to forecast
body motion in the future. Extensive experiments validate that the 3D
bounding box information of scene objects can significantly improve
the performances of motion forecasting (Table 2 and Figure 4). We also
found that increasing the number of scene objects does not necessarily
improve the motion forecasting performance (Table 3), revealing that
users’ body motions are mainly influenced by the objects that are



Table 3: Mean per joint position errors (unit: millimeters) of our method using different numbers of scene objects, spatial nodes, pose residual GCN,
and fuse residual GCN for motion forecasting on the MoGaze dataset. Best results are in bold.

Method 100 ms 200 ms 300 ms 400 ms 500 ms 600 ms 700 ms 800 ms 900 ms 1000 ms Average
object 0 13.9 26.6 40.0 54.5 70.5 87.8 106.0 124.9 144.3 163.9 77.8
object 1 13.5 26.0 39.3 54.0 69.9 87.1 105.1 124.1 143.5 162.8 77.1

object 2 (ours) 13.2 25.6 38.6 52.9 68.7 85.7 103.9 122.7 142.0 161.3 76.1
object 3 13.6 26.1 39.3 53.8 69.6 86.6 104.7 123.5 142.8 161.9 76.8
object 4 13.6 26.2 39.5 54.1 70.0 87.1 105.1 123.8 143.2 162.5 77.1
object 5 13.8 26.3 39.7 54.3 70.3 87.7 106.0 124.8 144.4 163.8 77.7

spatial node 1 (no repeat) 14.0 26.7 40.1 54.6 70.3 87.3 105.3 123.7 142.7 162.1 77.3
spatial node 5 (ours) 13.2 25.6 38.6 52.9 68.7 85.7 103.9 122.7 142.0 161.3 76.1

spatial node 10 13.3 25.9 39.2 53.8 69.8 87.0 105.2 124.1 143.5 162.9 77.0
spatial node 20 13.1 25.5 38.7 53.3 69.3 86.5 104.8 123.8 143.3 162.8 76.7
spatial node 30 13.0 25.5 38.8 53.4 69.3 86.8 105.1 124.2 143.6 162.8 76.8

pose residual GCN 0 13.4 25.8 39.1 53.6 69.4 86.5 104.6 123.3 142.7 161.9 76.6
pose residual GCN 8 (ours) 13.2 25.6 38.6 52.9 68.7 85.7 103.9 122.7 142.0 161.3 76.1

pose residual GCN 16 13.4 25.8 39.2 53.9 70.0 87.5 105.8 125.0 144.6 164.1 77.5

fuse residual GCN 0 16.1 31.0 46.0 61.5 78.0 95.7 114.7 134.5 155.3 176.6 85.1
fuse residual GCN 8 14.3 27.0 40.3 54.9 70.6 87.7 105.8 124.7 144.1 163.4 77.8

fuse residual GCN 16 (ours) 13.2 25.6 38.6 52.9 68.7 85.7 103.9 122.7 142.0 161.3 76.1
fuse residual GCN 32 13.3 25.8 39.2 53.8 69.8 87.1 105.6 124.8 144.7 164.4 77.4

Table 4: Time costs and model size of different methods.

Method Training (Per Batch) Test (Per Batch) Model Size
Res-RNN [35] 37 ms 32 ms 3.41 M
siMLPe [12] 62 ms 36 ms 0.09 M
HisRep [34] 56 ms 37 ms 3.38 M
PGBIG [30] 97 ms 39 ms 1.93 M

Ours 59 ms 10 ms 2.23 M

Table 5: Statistical results of different methods’ rankings in our user study.
Best results are in bold. Rank 1 means best performance.

Ours PGBIG [30] HisRep [34]

Precision
Median 1.0 2.0 3.0
Mean 1.2 2.3 2.5
SD 0.5 0.6 0.6

Realism
Median 1.0 2.0 2.0
Mean 1.3 2.2 2.3
SD 0.6 0.7 0.7

closer to the viewport centre. These results provide meaningful insights
for developing future scene object-aware human motion forecasting
methods.

Usability of Our Method Although our method requires addi-
tional information on the egocentric 3D object bounding boxes , such
information is readily available in VR/AR systems [6, 14, 18, 39] and
can also be easily accessed in real-world environments by applying
existing 3D object bounding box estimation methods [36]. In addition,
even using only historical body poses as input, our method still achieves
significantly better performances over prior methods (Table 1), further
validating the usability of our method in real applications.

Head Orientation vs. Eye Gaze We have tried to use eye gaze
in our preliminary experiments and found that eye gaze performs worse
than head orientation in terms of MPJPE error on ADT (38.6 vs. 37.7).
This is probably because eye gaze is much more noisy than head orien-
tation and thus degrades overall performance. Therefore, we opt to use
head orientation in our architecture.

Limitations Despite all the advances that we have made, we iden-
tified several limitations that we plan to address in future work. First,
to the best of our knowledge, the MoGaze and ADT datasets are the
only public datasets that provide both full-body motion and information
on 3D scene objects, thus unfortunately limiting the generalisability
of our evaluation. In future work, we plan to assess our method for a
broader range of activities and environments. In addition, our method is
specifically designed for human-object interactions and may not work

well for other situations such as human-human interactions. How to
adapt our method to other situations remains to be explored. Finally,
our method takes observed past body poses and scene objects as input
while in real applications the input data may be incomplete due to
tracking errors and may degrade the performance of our method. How
to deal with incomplete observations is worthy of further study.

Future Work Besides overcoming the above limitations, many
potential avenues of future work exist. First, it would be interesting
to explore the effectiveness of other scene object-related information
such as shape and colour for human motion forecasting. In addition,
we are also looking forward to adding some physical constraints for
the predicted human poses to make them more physically plausible.
Furthermore, integrating our method into motion-related VR/AR appli-
cations is an interesting avenue of future work. Finally, adding prior
knowledge on human intention during human-object interactions, e.g.
the target object during a pick activity, to our pipeline may further boost
the motion forecasting performance.

6 CONCLUSION

In this work we proposed a novel method for human motion forecasting
during human-object interactions that first uses an encoder-residual
GCN and multi-layer perceptrons to extract features from past body
poses and egocentric 3D object bounding boxes respectively, fuses
these features into a pose-object graph, and applies a residual-decoder
GCN to forecast future motion. Through extensive experiments on
two public datasets for motion forecasting at different time intervals
we demonstrated that our method consistently outperformed several
state-of-the-art methods by a large margin. We also validated that our
predictions were more precise and more realistic than prior methods
through a user study. As such, our work reveals the significant infor-
mation content available in egocentric 3D object bounding boxes for
human motion forecasting and informs future research on this promis-
ing research direction.
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