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Abstract— Upper-limb activities of daily living like eating and
drinking are crucial for self-determination and autonomy and,
thus, quality of life. Patients with neurodegenerative diseases
such as Parkinson’s disease, multiple sclerosis or cerebellar
ataxia are often severely impaired in performing these activities
of daily living. While these patients are still able to plan motor
actions, and their muscle strength is rarely impaired, tremor or
overshooting movements disturb the intended movements. This
occurs progressively in the course of disease in a way that inde-
pendent eating and drinking becomes increasingly difficult. The
goal of this research project is to develop a non-invasive assistive
device suppressing pathological movement components while
allowing intended movement. The newly designed hardware will
be controlled by a combination of computational methods to
detect user intention, detect pathological movement components
within intended movements, and predict the required correction
forces for several upper-limb activities of daily living. In this
manuscript, we will describe concepts of control hard- and
software as well as first implementation and experiments with
the individual components we plan to integrate in the future.

I. INTRODUCTION

Cutting food or filling a glass from a bottle while dining
is crucial for self-determination and autonomy and, thus,
quality of life. Patients suffering from neurodegenerative
diseases, such as Parkinson’s disease, multiple sclerosis or
cerebellar ataxia might not be able to perform such activities
of daily living (ADL) all the time.

Although these patients are able to plan motor actions,
and their muscle strength is rarely impaired, different types
of tremor [1] [2] or dysmetric movements (over- and under-
shooting of goal-directed movements in cerebellar ataxia) [3]
[4] [5] disturb the intended movements.

This occurs progressively in the course of disease such that
independent eating and drinking becomes increasingly diffi-
cult. Assistive devices, which pro-actively suppress patholog-
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of the AUTONOMOUS ROBOTICS project iAssistADL granted to WI, MG,
SS, and DH.

ical movement components and restore the intended move-
ment could dramatically improve patients’ motor abilities,
as has been shown in approaches to wearable systems for
tremor suppression [6].

We here address the field of ADL with the focus on
situations like a regular meal where food has to be cut,
forked, brought to the mouth and a glass of water has to be
filled from a bottle and brought to the mouth. These activities
are characterized by a finite number of objects and tasks, a
meaningful order of some tasks, but generally open in the
location of objects and user and situation-specific in their
execution order.

The goal of this research project is to develop a non-
invasive assistive device with the capability to suppress
pathological movement components while allowing intended
movement in patient-relevant ADLs.

A. Methodological Approach

We address the following challenges in the development
of such assistive devices:

1) Predicting planned movements during ADL and de-
tecting pathological movement components within ex-
ecuted movements in real-time.

2) Designing a lightweight and mobile assistive device
with minimal mechanical complexity and sufficient
transparency (to not hinder the movement of the user)
and, at the same time, the capacity to apply in real-time
the amount of corrective forces sufficient to suppress
pathological movement components.

To this end, we combine computational methods to detect
(a) the user intention, predict the human arm movement cor-
responding to the intention, (b) differentiate between desired
movement and pathological movement components and (c)
develop a neuromechanical model to predict the required
correction forces and (d) apply them with an adequately
designed assistive device (Figure 1).

The presented concepts differ significantly from concepts
for stroke patients, where paralysis of the limbs or spasticity
is the main issue (e.g. [7],[8]. Devices for stroke need to
exert forces large enough to generate the entire movement
and—typically slowly—follow given trajectories, thus, they
typically place fewer demands on the real-time constraints
in intention detection [9] and movement correction [6].

This paper reports about the overall concept and our first
implementations and test of the sub-components. At this



point, these components are not integrated yet leaving the
validation of the concept as future work.

II. METHODS

A. Multi-modal sensor setup

Multiple sensor modalities were captured synchronously
to assess the subject’s motion behaviour and infer the in-
tention (Figure 2). To determine gaze direction in real-
life scenarios, we used the eye tracking glasses Neon by
PupilLabs (Pupil Labs GmbH, Berlin, Germany) [10], which
additionally record a video from the egocentric perspective
and give information about head movements via an inertial
sensor. Multiple IMUs from Xsens Technologies (Movella
DOT, Xsens Technologies B.V., Enschede, Netherlands) were
placed on both arms and the sternum to track and quantify
arm and trunk movements. The stereo depth camera ZED
2i from Stereolabs (Stereolabs Inc., San Francisco, USA)
were placed across the table of the subjects and captures
the depth and RGB information of the experimental setup.
Based on this depth and RGB information, object recognition
and skeleton tracking routines were implemented using the
camera-related APIs. Fusion of the IMU and depth-camera
sensor signals allows for combining the benefits of both sen-
sors: high time-resolution and local accuracy of IMU’s and
global position accuracy of the depth-image to compensate
for drift in the IMU signals. Details of the sensor fusion
concept are provided in the next section.

A software architecture based on the ROS2 (Robot Op-
erating System) middleware was implemented to acquire
all sensors synchronously with the sensor-specific real-time
constraints. ROS2 provides the ability to reliably exchange
and store large amounts of data at high frequency and is
widely used in medical and industrial applications [11] [12]
[13].

B. Development of a Kalman filter-based sensor fusion al-
gorithm for motion tracking

Intention detection, tremor recognition, and prediction of
movements require sensor-fusion approaches to combine dif-
ferent sensor modalities. To perform robust motion tracking,
we developed and evaluated a Kalman filter-based algorithm
for motion tracking and state estimation. The primary aim
was to integrate data from multiple sensors to achieve accu-
rate tracking of upper limb motion, particularly the hand and
wrist. For this, we combined the complementary strengths
of two sensors: the Xsens Movella DOT IMU system, which
provides fast precise acceleration and angular velocity data
but shows a drift when estimating global positions, and the
Stereolabs ZED 2i stereo camera with skeleton fitting, which
delivers global 3D position data, but at a lower frequency.

The Kalman filter was selected for its ability to perform
real-time state estimation in dynamic systems. Specifically,
we employed a discrete-time linear Kalman filter to estimate
the states of position, velocity, and acceleration. The filter’s
structure consists of a prediction step, which uses a kinematic
motion model to estimate the next state based on the current
state, and an update step, which refines this estimate using

sensor measurements. In the filter, weights were assigned
to each sensor based on their noise characteristics, ensuring
robust performance even under noisy conditions.

The state transition model for the Kalman filter estimates
the position x, velocity v, and acceleration a of the wrist.
The discrete state-space model can be expressed as:

sk+1 = Fsk +wk, zk = Hsk + vk

where

sk =
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ak
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[
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]
,

where F is the state transition matrix, H is the measurement
matrix, wk and vk are the process and measurement noise,
respectively, and ∆t is the sampling time.

To evaluate the filter’s performance, we first designed a
testing framework using an ideal trajectory overlaid with
experimentally derived noise. Noise profiles for the IMU
and stereo camera were characterized through calibration
experiments, where the sensors were subjected to static
placement evaluation to get their base noise readings. The
accelerometer’s and stereo camera signal variances were used
to estimate the measurement noise covariance matrix.

The primary metric for evaluating performance was the
Root Mean Square Error (RMSE) of the reconstructed tra-
jectory compared to the ground truth. Ground truth data
was generated using (a) mathematical simulation and (b)
a high-accuracy optical motion capture system, which pro-
vided precise positional and velocity measurements for the
ideal trajectory. By calculating the RMSE, we assessed the
algorithm’s accuracy in estimating states under various noise
levels.

Finally, the sensor fusion approach was validated using
real experimental data. This included datasets captured with
both the IMU and stereo camera in scenarios simulating
upper-limb motion. The fusion algorithm was tested in
realistic conditions, accounting for sensor noise, data loss,
and calibration challenges.

C. Online detection of pathological movement components

For the detection of pathological movement components,
we concentrated on tremors and dysmetric movements (over-
and undershooting). In the case of tremors, we have to
take into account that the frequency of the tremor may
change within the movement in the action and intention
tremors. Therefore, we used a Bandlimited Multiple Fourier
Linear Combiner improved with a Kalman Filter [14] to
estimate thesinusoidal movements with changing frequencies
to identify the tremor component of the voluntary motion in
real-time. See subsection III-B for preliminary results.

D. Neuromechanical modeling of healthy and impaired
movement

Using neuromusculoskeletal arm simulations, we can pre-
dict both healthy and impaired movements and estimate
the necessary assistive forces for correction [15]. These
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Fig. 1: Overview of the overall control architecture and its individual components.

Fig. 2: The used sensor modalities to collect various data. a) ZED2i stereo
camera b) Movella DOT IMUs c) Eye tracking system Pupil Labs Neon.

predictions helpt to determine the corrective forces required
as control inputs to the assistive device, which, in turn,
will in the future apply forces to the human arm to correct
dysfunctional movements (see Figure 1 c)).

To predict healthy movements, we developed a simulation
approach for 3D arm movements that integrates three key
factors: optimality principles, task requirements, and stochas-
tic noise. Muscle and multibody dynamics were simulated
using the MuJoCo physics engine [16] due to its com-
putational speed and applied reinforcment learning (DEP-
MPO) [17] to synthesize the control policy. We build on
our previous work with a simplified, two degree-of-freedom
arm model with six muscles-tendon units [18]. In this work,
we achieved highly realistic arm trajectories (realism index
> 0.9), comparable to those of healthy individuals.

Expanding this framework, we tested a more complex
model with seven degrees of freedom and 27 muscle-tendon
units (see Fig. 4). Our pior work showed that this 3D arm
model predicts stiffness characteristics that closely match
experimental data recorded from data while still being com-
putationally efficient [19]. This model therefore allows us to
predict the effect of corrective forces for our assistive device

Fig. 3: Screenshot of the Graphical User Interface. System information is
shown on the top left, including possible runtime errors such as data loss
due to restricted data buffer size. It also features the recording control and a
button for event generation. Live data of the motion sensor is shown below.
The two top right shows the eye-tracking system with an overlay of gaze
data and timestamps. Bottom right shows the RGB image of the ZED2i,
overlayed with skeleton data.

when attempting to mitigate the effects of motor control
impairments.

As a first attempt to simulate pathological movement
components, we added a sinusoidal signal to the elbow flexor
muscle with frequencies occurring in the targeted diseases
and varying amplitudes, generating stereotypic tremor move-
ments (Fig. 4). Albeit its simplicity, this isolated approach
is beneficial to determine (joint-)specific correction forces.
However, we aim at simulating more naturalistic tremors in
the future, by transferring our own and previous experimental
data onto the model [20], [15] and by considering neurolog-
ical origins of dysmetria and tremor [21], [22], [23].

E. Design requirements and hardware development

A lightweight assistive device, schematically represented
in Fig. 5, was devised to apply corrective forces. It includes
a prismatic joint along the z-axis, enabling force application
in the vertical direction (blue), along with two revolute
joints arranged in series (both axes parallel to the z-axis)
in red and green, which mimic the human shoulder and
elbow joints. This coordinated arrangement allows for the
application of forces in any direction within the horizontal
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plane. Although preliminary investigations in simulation sug-
gested that a force of 5 N applied to the hand can already
effectively reduce or prevent the aforementioned movement
disorders, the device was designed to provide a force of 10
N to account for the more proximal point of application
of the corrective forces (forearm) and potential intersubject
variability. We chose a bi-articular actuation scheme for the
elbow joint actuation, spanning both the shoulder and elbow
joints, as simulations indicated that this approach reduces
the maximum torque required by the shoulder actuator
compared to a mono-articular elbow actuation scheme. Two
mechanisms were used to relocate both shoulder and elbow
actuators proximally with respect to the vertical prismatic
joint: a ball spline mechanism was utilized to transmit the
shoulder actuator moment through the linear bearing of the
prismatic joint, while a cable transmission was integrated
into the scissor mechanism that connects the prismatic joint
output to its driving actuator. The integration of the scissor
mechanism also facilitated the compact incorporation of a
spring mechanism for passive weight balancing of the robotic
arm (see Fig. 5(a)(1)). As all three actuators were attached
to the base of the device, the moving part of the designed
robotic arm is lightweight and exhibits low apparent inertia,
which positively contributes to reducing resistance to user
movement when no correction is needed.

A mechanical interface (see Fig. 5 (b)) fixed at the tip
of the robotic arm facilitates the application of corrective
forces to a point approximately located at the midpoint of
the user’s forearm, thus enabling the generation of corrective
moments at both the elbow and shoulder. This interface
employs a mechanism similar to a gimbal, ensuring that
the applied force is centered relative to the forearm, thereby
preventing the generation of parasitic moments. The interface
was constructed with two passive revolute joints, with the
freedom of rotation along the forearm’s longitudinal axis
provided by the relative motion of soft tissues with respect
to the user’s skeleton. The mechanical interface also extends
to the wrist, allowing for the application of forces along the
longitudinal axis of the forearm with minimal slippage.

Fig. 5: (a) Schematic of the assistive device with three active DoF. From
proximal to distal: a prismatic joint along the z-axis (blue) actuated via
a scissor mechanism (1) which motion is constrained by the ball spline
mechanism (2), a first rotational joint along the ball spline axis (red) and a
second rotational joint bilaterally actuated using cables (3) routed through
the scissor mechanism (green). All actuators are fixed to the base of the
device, which significantly lowers the mass of the mobile part (arm) of the
device. A passive spring mechanism (4) is used to balance the weight of
the arm. (b) Close-up of the user interface with 3 passive DoF.

A preliminary evaluation study was performed with the
unactuated device. First, we measured the resistive torques or
forces experienced when moving each robotic arm DoF with
joint velocities typical for the envisioned ADL. Second, we
carried out a study with 5 healthy individuals to evaluate the
device transparency (Task 1) and range of motion (Task 2).
In Task 1, the subjects performed the ADL ”Drinking” (fill a
glass with the bottle using their right hand and then drink the
water from the glass) with the device and were asked to rate
from 0 to 10 how much the device was disturbing them (<3:
not disturbing; 4-6: little disturbing; >7: very disturbing).
In Task 2 the participants were instructed to sequentially
place the bottle as close as possible to the four corners of a
rectangular workspace drawn on the table in front of them,
while avoiding to lean forward.

F. Experimental data acquisition

To achieve the project goal, a novel dataset will be
recorded that includes kinematic data, gaze data, and scene



video including depth information (approved by the local
ethics committee in Tübingen 474/2023B02). The developed
ROS2 software architecture will be used to record a patient
group (n = 20) and a group of age-matched healthy controls
(n=20).

TABLE I: Planned experimental tasks.

Complex ADLs Clinical test
Holding an object Pointing on the table
Peeling, cutting and eating a banana Moving objects
Drinking from a glass Drawing the Archimedian spiral
Meal preparation

The patient group comprises subjects suffering from neu-
rodegenerative diseases such as Parkinson’s disease, multiple
sclerosis, or cerebellar ataxia exhibiting ataxic dysmetric
movements (over- and undershooting of goal-directed move-
ments in cerebellar ataxia) or tremors such as action and
intention tremors.

The participants will be recorded performing different
tasks that involve the upper extremities, e.g., meal prepara-
tion, while sitting at a table. A standardized data acquisition
and experimental protocol was developed. The choice of
tasks matches the future application scenario of the assistive
device, but also fundamental knowledge is gained about the
pathological movements (see Table I). This includes tasks
with a high level of standardization and tasks with a higher
amount of flexibility.

In the eating task, participants will be instructed to peel a
banana, to cut the banana with a knife into smaller pieces,
and to eat the pieces with a fork. The drinking task includes
opening a bottle and pouring water into a glass. In the context
of meal preparation, a Tupperware container is to be opened
and the noodles inside emptied into a bowl. The Tupperware
box should then be closed. In a follow-up task the noodles
should be scooped out from the bowl into a cup using a
laddle. The ”clinical test” includes pointing movements at
different locations on the table with the index finger, moving
wooden bricks from one place to another predefined location,
and drawing the Archimedian spiral in the clockwise and
anti-clockwise direction.

The experimental protocol will also include a question-
naire to obtain further information that is relevant for analyz-
ing the recorded data and developing the assistive device. The
questionnaire covers socio-demographic and anthropometric
data on each subject; pathology and associated symptoms;
and expectations, doubts and requirements of such a non-
invasive assistive device.

III. PRELIMINARY RESULTS

A. Preliminary Results of Kalman Filter

After preliminary data collection, raw data from the IMU
and stereoscopic camera were synchronized and prepro-
cessed before being put into the Kalman filter. Preprocessing
included removal of gravity component from raw accelera-
tion data, shifting of coordinate systems of the Xsens IMU
and the ZED 2i camera, and upscaling data of the stereo
camera to match IMU sampling frequency to enable sensor
fusion. The coordinate systems of the stereo camera and the

IMU at the wrist were aligned by first translating the origins
to the same point and applying a rotation matrix computed
using the the Kabsch algorithm [24]. The stereo camera data,
although accurate, occasionally suffered from tracking loss,
particularly during rapid movements. These limitations were
mitigated through the sensor fusion.

In the testing framework using an ideal trajectory as
ground truth, the filter achieved low RMSE values of 7.8,
7.8 and 7.4 m−4, in the X , Y , Z directions, respectively.
The tests with realistic experimental data demonstrated that
the Kalman filter effectively fuses data from the IMU and
stereo camera, producing smooth wrist trajectories under
varying conditions. The filter successfully estimates motion
trajectories while filtering out high-frequency noise.

B. Online detection of pathological movement components

Fig. 6: Snapshot of the recording of the drinking scenario for a tremor
patient. Green dots represent the subject’s workspace as identified by the
stereo camera. Purple dots show the key points of the skeleton tracking.
The left part of the image shows the online tracking of the inertial sensors,
showing specific accelerations on the wrist sensor for different subphases
of movement.

Results on the data collected so far show varying tremor
frequencies not only for different patients but also for the
same patient in different phases of movement (Fig. 6 + 7).
This reflects the clinical impression of action and intention
tremors. Such changing frequencies could be tracked with
Bandlimited Multiple Fourier Linear Combiner, improved
with a Kalman Filter, to estimate the changing frequencies.
It allowed to separate the tremor offline (Fig. 7) and in real-
time (Fig. 6). Further approaches will aim to incorporate
prior knowledge about patient-specific tremor frequencies in
order to optimize fast online detection.

C. Simulation of healthy and impaired arm movement

The synthesized control policy can generate both healthy
and impaired point-to-point 3D reaching movements (Fig. 8).
On the one hand, the direct application of the muscle control
command uhealthy resulted in arm reaching movements with
healthy kinematics characteristics: (i) roughly straight hand
trajectories and (ii) bell-shaped velocity profiles (see early



Fig. 7: The bandlimited multiple-fourier linear combiner with Kalman filter
adapts to the frequencies of the pathological movement component (red).

reaching phase in Fig. 8, both in healthy and pathological
movement). The addition of a sinusoidal signal to the muscle
control command of the elbow flexor resulted in periodic
positional oscillations around the target position, which is
an approximation of tremors.

D. Hardware: Preliminary evaluation of device prototype

The evaluation study (see Fig. 9) revealed that the
workspace reachable by the test subjects and available for
executing the ADLs was only very marginally (2,2% in
average) reduced by the device usage. The test subjects
also evaluated positively the mechanical transparency of the
device (average rating of 2,2: not disturbing), especially for
motions in the horizontal plane but reported a noticeable
resistance to vertical motions. This subjective evaluation was
confirmed by the quantitative tests: low resistive torques
(mean value <= 0.1 Nm) were measured for the rotational
joints, while a mean resistive force of about 3 N (primarily
dry friction) was measured for motions along the z-axis,
attributed to internal friction in the ball spline mechanism. In
summary, the selected transmission mechanisms, character-
ized by low internal friction, were shown to enable efficient
torque transmission. This design allows using reasonably
lightweight motors (approximately 1 kg per actuator) in a
quasi-direct drive mode (reduction ratio < 3) to generate the
necessary corrective forces. Based on the performance of
the direct drive actuation, it is anticipated that interaction
forces can be accurately estimated using motor current

Fig. 8: Neuromechanical simulation of healthy (green) and impaired (red)
arm movements. The impaired movement was simulated by adding a
sinusoidal signals with frequencies occurring in the related diseases and
different amplitudes added to the simulated muscle control signal. Here we
show exemplarily 4 Hz and an amplitude of 0.5 (50% maximum muscle
stimulation)

measurements in the horizontal plane, whereas active force
control may be necessary to compensate for friction in the
vertical direction. To address this, a single uniaxial force
sensor will be integrated in the next iteration between the
arm’s tip and the mechanical interface with the user.

Fig. 9: (a) Subject performing ADL ”Drinking”, (b) ROM tests.

IV. DISCUSSION

In this manuscript, we presented the concepts and first
implementations of the individual components of our hard-
ware and software architecture for an assistive device for
patients with neurodegenerative movement disorders like
cerebellar ataxia, multiple sclerosis or Parkinson’s disease.
These specific movement impairments result in pathological
movement components overlaying the intended movements.
This leads to specific requirements in the hardware and
software concepts [15],[6] which differ significantly from
concepts for stroke patients, where paralysis of the limbs or
spasticity is the main issue (e.g. [7],[8]. Devices for stroke
need to exert forces large enough to generate the entire
movement and—typically slowly—follow given trajectories
or predefined tasks and, thus, they typically place fewer de-
mands on the real-time constraints in intention detection [9]
and movement correction [6]. Thus, the two specific aspects
of (a) rapid correction of complex everyday movements with
(b) a lightweight and low-cost assistive device are the focus
of our developments. With the developments and results so
far, we have already been able to take some substantial
steps in this direction. However, we still develop the indi-
vidual components. Next steps will include ML methods
for intention detection by combining the gaze estimation



of the eye-tracker with the current state of the movement
tracking [25]; more naturalistic modeling of dysfunctional
movements [23], [22], [15]; prediction of corrective forces
with the neuromechanical model [22], [23], [15]; the real-
time integration of all components; first user test.
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