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ABSTRACT
We propose a new technique for visual analytics and annotation
of long-term pervasive eye tracking data for which a combined
analysis of gaze and egocentric video is necessary. Our approach
enables two important tasks for such data for hour-long videos
from individual participants: (1) efficient annotation and (2) direct
interpretation of the results. Exemplary time spans can be selected
by the user and are then used as a query that initiates a fuzzy
search of similar time spans based on gaze and video features. In
an iterative refinement loop, the query interface then provides
suggestions for the importance of individual features to improve
the search results. A multi-layered timeline visualization shows an
overview of annotated time spans. We demonstrate the efficiency
of our approach for analyzing activities in about seven hours of
video in a case study and discuss feedback on our approach from
novices and experts performing the annotation task.
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•Human-centered computing→Visualization;Visualization
techniques.
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Figure 1: Classification of analysis tasks for behavior
adapted from Chaaraoui et al. [2012]. We see the advantage
of visual analytics in the analysis of activities and behavior
that require a higher degree of semantic interpretation.

1 INTRODUCTION
Eye tracking glasses provide rich data about a person’s gaze be-
havior. In comparison to remote eye tracking, the glasses can be
worn in everyday situations over long time spans [Bulling et al.
2013]. Such pervasive eye tracking data [Bulling and Gellersen
2010] plays an important role for research on eye-based activity
recognition [Bulling et al. 2011], behavior analysis [Hayhoe and
Ballard 2005], lifelogging [Bolanos et al. 2017], and quantified-self
scenarios [Kunze et al. 2013]. The analysis of such data requires
automatic processing to handle the large amount of gaze and video
data. According to Chaaraoui et al. [2012], human behavior analysis
tasks can be classified as represented in Figure 1. An increasing time
frame for investigation correlates with an increasing degree of se-
mantic interpretation required to identify motion, actions, activities,
and finally behavior. Hence, automatic processing with machine
learning techniques becomes more difficult for activities and be-
havior that might consist of multiple actions. As a consequence,
supervised learning approaches are applied but expect annotated
data [Turaga et al. 2008], which requires tedious manual work by
human annotators. Furthermore, we see the final level of the scheme
(Figure 1)—the analysis of behavior— as the stage where human
analytical reasoning is still required to interpret sequences of activ-
ities, for example, to compare between different behaviors and find
causalities between activities. As a consequence, we identified two
major tasks in this domain that depend on human reasoning and
benefit from visual analytics to support the user:
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(T1) Annotation: Depending on the research question, a set of
different activities has to be identified. Automatic recognition ap-
proaches require some sort of training data to process new events.
Hence, the annotation of relevant activities is an essential task that
can be supported by visual analytics.

(T2) Sequential Analysis: Even if all activities are recognized auto-
matically, some questions require an interpretation of sequences of
activities. For example, what does the typical workday of an efficient
student look like? This can be highly different between persons
and requires detailed inspection and interpretation of the chain of
activities during the day. Also, the granularity of activities is hard
to define automatically because some behavior might consist of
multiple other activities.

In this paper, we contribute an approach for the nonlinear anno-
tation and sequential analysis of long-term videos and gaze from
pervasive eye tracking. We developed an interactive query interface
that helps identify potential time spans of interesting activities. The
query is processed by a new approach based on region growing
with multiple feature sets allowing for the flexible search of time
spans with varying length. The implemented prototype is publicly
available1. We demonstrate our approach in a case study with data
from an experiment that comprises over seven hours of everyday
activities for one participant. In addition, we evaluate quantitative
and qualitative feedback from novices and experts performing an
annotation task with our implemented prototype.

2 RELATEDWORK
Focusing on the underlying data, i.e., video and gaze, we can sepa-
rate the discussion of related work into three research directions:
the visualization of time series data, the analysis of video data with
the focus on visual analytics and retrieval approaches, and the
analysis of eye tracking data.

Time Series Visualization. Related work on the visual analysis
of time series data is extensive. A general overview is provided by
Aigner et al. [2011]. According to their taxonomy, an appropriate
visualization for abstract, multivariate data features with linear time
arrangement is necessary. For efficiency, the visualization provides
a static mapping of the data in 2D. The basis of our visualization is
a flow graph comparable to stacked graphs [Byron and Wattenberg
2008] or the ThemeRiver [Havre et al. 2002]. We extend this concept
by linking the graphs on multiple time layers with extracted video
segments and their pictorial representation.

Video Visual Analytics and Retrieval. Video visual analytics aims
to combine aspects of exploratory data analysis, knowledge discov-
ery in databases, and information retrieval with interactive visual
interfaces [Höferlin et al. 2015]. This concept has been applied,
for example, to summarize movies [Kurzhals et al. 2016] or soccer
games [Janetzko et al. 2014]. There also exist techniques that sum-
marize long-term videos with visualization: Botchen et al. [2008]
and Romero et al. [2008] represent motion activity in a space-time
cube. However, these techniques require a fixed coordinate system,
which is not available in egocentric video. Hu et al. [2011] survey
strategies in video indexing and retrieval, i.e., (1) video structure

1VAGAZ, https://github.com/Maurice189/VAGAZ, last checked: March 04, 2020

analysis, (2) feature extraction, (3) video data mining, classifica-
tion, and annotation, (4) query and retrieval, (5) summarization
and browsing. We address all these points with a visual analytics
approach focusing on query and retrieval for annotation and sum-
marization. Further, we emphasize the combined search of gaze and
video features. For egocentric video, summarization approaches are
often reduced to a series of video skims, dynamic fast-forward, or
storyboards. For depicting search results, we apply a representa-
tion similar to storyboards, but we link them with a visualization
that provides further details of involved features and the temporal
coherence of the results. Similar approaches can be found in the
work of Schoeffmann et al. [2010] and Higuchi et al. [2017], on
timeline-based approaches to explore videos guided by features.
However, their approach is limited to image and motion similarities
without the inclusion of gaze data. Similar to other authors, we
use video features based on visual appearance [Zhang et al. 2012]
and apparent motion [Poleg et al. 2014] as means for queries. The
details are discussed in Section 4.

Eye Tracking Analysis. Numerous publications describe methods
for the recognition of actions and activities based on video data [Lee
et al. 2012], gaze data [Bulling et al. 2011], or both data sources
combined [Fathi et al. 2011; Ogaki et al. 2012]. Furthermore, there
are unsupervised approaches that try to identify clusters of time
spans with a similar structure, e.g., based on topic modeling [Steil
and Bulling 2015]. The results of these approaches still require vi-
sual inspection to identify the type of extracted pattern. For the
visualization of such data, our approach would also be applica-
ble. Blascheck et al. [2017] provide a survey and a taxonomy of
visualizations for eye tracking data. Techniques are separated into
approaches with and without the need for areas of interest (AOIs).
Our approach does not rely on AOIs. It represents extracted features
and annotated time spans without a semantic mapping of gaze to
specific areas. Only few techniques cover the analysis of data from
eye tracking glasses directly, because it is often assumed that AOIs
will be annotated to apply established techniques. As an example,
Tsang et al. [2010] create word trees of fixation sequences on AOIs
for data from mobile eye tracking. Kurzhals and Weiskopf [2015]
adapt a word cloud to represent AOIs in pervasive eye tracking.
Other authors use fiducial markers to identify important regions au-
tomatically [Pfeiffer et al. 2016]. There are two publications that are
closely related to our approach: Blascheck et al. [2016] investigate
participants working with interactive software and Kurzhals et al.
[2017] present an approach to label segments from multiple short
egocentric eye tracking recordings. Both approaches support less
flexible queries and were not conceptualized for the long time spans
we cover with our technique. In general, only few techniques exist
that consider long-term eye tracking data. Muthumanickam et al.
[2016] address this issue for long-term recordings with AOI-based
visualizations and with a space-time cube [Muthumanickam et al.
2019]. The AOI-based approach faces the issues mentioned before,
and the space-time cube is restricted to a fixed coordinate system
and cannot handle the dynamic changes in mobile gaze data.

3 VISUAL ANALYTICS INTERFACE
To support the efficient annotation (T1) and analysis (T2) of long-
term videos and gaze, we identified four requirements a visual

https://github.com/Maurice189/VAGAZ
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Figure 2: Visual interface for annotation and analysis: the multi-layered timeline shows feature intensities over time for
respective time spans. Gaze and video parameters allow analysts to refine query results, supported by visual guidance. The
query results are represented by thumbnails of respective time spans that are animated on mouse over.

(a) single feature (e.g., fixation duration)

(b) multiple features (e.g., saccade directions)

Figure 3: Detailed timeline visualization for (a) single and
(b) multiple features (color: left, right, up, down). Gray ar-
eas in the background indicate subshot boundaries and the
spectrogram depicts the temporal development of values.

analytics approach has to fulfill: (1) Some activities are better char-
acterized by video features, others by gaze behavior. Both are neces-
sary for a thorough analysis of the data (T2). (2) Both tasks require
an overview of annotated and unexplored parts of the video ma-
terial (T1), (T2). (3) It should be possible to identify an activity
and then look for similar time spans, based on a range of different
features. The results should also be displayed in the overview (T1),
(T2). (4) With an increasing number of features, it becomes difficult
to identify which features should be weighted more for the search.
Hence, the visualization should provide guidance which parameters
are important, but also allow to formulate a query based on exper-
tise (T1). This work is a collaboration between experts in visual
analytics, computer vision, and domain experts for eye tracking and

activity recognition. The derived requirements are the result of a
formative process consisting of multiple discussions and iterations
of the implemented prototype over a period of six months. This
process also led to the design choices described in the following.
Figure 2 shows an overview of our framework. It consists of three
major components: a multi-layered timeline visualizing features
and respective frames of video segments, an interface for guided
query refinement based on feature weighting, and a query result
view showing thumbnails of retrieved time spans.

Multi-Layered Timeline. We decided to apply multi-layered time-
lines with spectrogram visualizations for feature intensities and pic-
torial representations of segments for fast interpretation of selected
time spans. This way, gaze and video features can be displayed in
one visualization. The timeline at the bottom (Figure 2, overview)
shows an overview of the dataset, and a time span can be selected
for a zoom on the next timeline above (zoom 1). This design is remi-
niscent of techniques such as SmoothScroll [Wörner and Ertl 2011]
or stack zooming [Javed and Elmqvist 2010]. It has the advantage
that multiple zoom levels can be investigated without losing the
overview. Additional layers could be added for longer durations.
The third timeline (zoom 2) shows an abstracted detail view of the
features and the subshot structure, as depicted in Figure 3. We dis-
play temporal units called subshots, which summarize time spans of
similar content. Section 4 discusses details on how to derive these
subshots. Individual subshots are shown by varying gray values in
the background. For each subshot, we provide a video thumbnail
(Figure 2, preview) with connectors to the timeline. Mouse-over
interaction on a thumbnail activates a video skim with a gaze over-
lay. To better understand the characteristics of individual features
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used to identify activities, analysts can switch between the feature
visualizations on the timeline and investigate their temporal devel-
opment. Annotated subshots are assigned to a color label depicted
with the timeline (annotations). In eye tracking, this visualization
is often referred to as scarf plot.

Query Result View. Time spans that contain a relevant activity
can be selected directly on the timeline and queried (query selec-
tion). Selections are processed with a search algorithm that also
considers variable result lengths (Section 4.5). Identified time spans
are highlighted on the timeline overview (query result time span).
We decided to depict the results in an additional view as thumb-
nails with mouse-over animation. That way, visual inspection of
the video snippets supports a fast validation of time spans and is
an established method in video retrieval tasks.

Guided Query Refinement. We provide a set of sliders for the ad-
justment of feature weights and thresholds for the search algorithm.
The weighting allows experts to include knowledge about features
and their contribution to specific activities. For example, video fea-
tures can be completely neglected to focus on gaze behavior only.
The adjustment of sliders requires guidance in case of an unknown
parameter space. Consequently, we designed a histogram-based
visual guidance (Figure 2) that depicts how changes of a parame-
ter will influence the number of query results. This aspect will be
further discussed in Section 4.5.

4 DATA ANALYSIS SUPPORT
Different activities in the data, initially often unknown to the ana-
lyst, require a set of versatile features that support both a meaning-
ful data reduction in a preprocessing step and flexible queries. The
analyst can adjust the weights of individual features according to
the visual guidance or based on expert knowledge. In this section,
we provide the technical details of the applied features, how the
data is preprocessed, and how the query is implemented. Figure 4
depicts an overview of our data processing pipeline. In the prepro-
cessing step, individual frames are first aggregated into temporal
base segments using fixation detection (Section 4.2) and then fur-
ther combined into subshots using image features (Section 4.1). The
subshots form the basis for queries of variable-length segments.

4.1 Video Features
In a video sequence, one can distinguish different categories of
features: intra-frame features such as the visual appearance of the
current scene or inter-frame features like the apparent motion
over time. Both categories are important since each of them covers
different aspects of a scene. While the intra-frame features allow
us to capture the environment (e.g., important objects) of a scene,
inter-frame features allow capturing actions that happen over a
time span. The importance of each aspect depends on the analysis
task. Hence, we support both aspects and help the analyst adjust
the corresponding weights where it is necessary.

Visual Appearance. In our approach, the visual appearance of a
frame is described globally, i.e., for the whole image. In contrast
to generic, hand-crafted image features such as SIFT [Lowe 2004]
or SURF [Bay et al. 2008] that heuristically combine neighborhood
information with geometric and photometric invariances, we rely

on CNN-based image features that have been explicitly learned for
the task of object recognition. More precisely, we use the 4,096-
dimensional global FC6 descriptor from AlexNet [Krizhevsky et al.
2012], since it covers a global receptive field and is thus an appro-
priate choice for image-wide comparisons. Please note that local
features in terms of image patches are also taken into account:
they are applied in the computation of gaze features when deriving
fixations from gaze points in Section 4.2.

Apparent Motion. Motion within a scene is considered in terms
of short-time motion between pairs of frames or in terms of long-
term trajectories along multiple frames. While the latter case con-
tains more information, the short-time motion can be estimated
efficiently in real time, which is a requirement for interactive ap-
plication in visual analytics. Nonetheless, even short-time motion
contains a lot of information, e.g., the presence of translations, ro-
tations, and zooms. Furthermore, it allows distinguishing camera
motion and dynamic motions of individual objects. There are differ-
ent approaches to extract short-time motions between frames like
sparse feature matching [Bay et al. 2008], dedicated object tracking
[Hager and Belhumeur 1996], or the estimation of a dense optical
flow [Brox et al. 2004; Stoll et al. 2013]. All of them have different
trade-offs between speed and accuracy. Our approach focuses on
speed. Hence, we make use of the real-time optical flow approach of
Adarve and Mahony [2016], which is the basis to assemble a motion
descriptor. This motion descriptor is designed to represent the local
structure of the flow field. To this end, we employ a binning of
extracted motion vectors based on angle and magnitude [Kurzhals
et al. 2016; Schoeffmann et al. 2010]. We provide a visualization
for the binning of angles on the timeline (Figure 3b). This helps
identify distinctive motion patterns in the visualization (Section 5).

4.2 Gaze Features
In contrast to video features that describe the appearance of a
scene, gaze features consider perceptual and cognitive aspects of the
recorded person. They can be subdivided into stationary features
(fixation duration, fixation count) and differential features (lengths
and direction of saccades) [Holmqvist et al. 2011]. Together, both
classes of perceptual features are indicators of how the observer
perceives the scene and interacts with it. In our approach, fixations
(and the resulting saccades) are detected as proposed by Steil et al.
[2018], who aggregate gaze points to fixations by means of similar
image patches to be robust under motions of the gaze target. The
similarity is determined using a deep convolutional image patch
similarity network [Zagoruyko and Komodakis 2015] as an effective
state-of-the-art method.

4.3 Similarity Measures
So far, we have described the choice of several features to have a
meaningful and compact representation of important video and
gaze data. In order to make them useful in the data preprocessing
and querying steps, we need similaritymeasures associated with the
chosen features. We consider two types of features: scalar features
(e.g., fixation count, saccade length) and vector-valued descriptors
(e.g., FC6, motion descriptors). For two positive scalar features a and
b, the following similarity measure s is applied: s(a,b) = min(a,b)

max(a,b)
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Figure 4: Data processing pipeline for preprocessing and queries.
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Figure 5: Variable length search of selections with region
growing. Matching seeds with high similarity are identified.
Each seed grows until a similarity threshold is exceeded.

For two vector-valued descriptors ®a and ®b, we employ a combination
of a shifted cosine-similarity measure to account for directional
similarity and the scalar measure from above, which is applied to
the magnitudes of the vectors to account for the similarity in the
length. The combined similarity measure is given by:

s(®a, ®b) =

1 + ®a · ®b
| ®a | | ®b |

2︸      ︷︷      ︸
directional similarity

·
min(| ®a |, | ®b |)
max(| ®a |, | ®b |)︸          ︷︷          ︸
length similarity

Hence, both measures consider direction and size of the features
and their results lie in a range between 0 and 1.

4.4 Data Preprocessing
According to the data processing pipeline (Figure 4), video and
gaze features are extracted first. Then, temporal segmentation is
performed by fixation detection on image patches. This step sum-
marizes individual frames into base segments. Finally, the base
segments are further combined into subshots by means of image
similarity. To this end, we aggregate the base segments represented
by similar descriptors. These aggregated subshots then constitute
the basis for further computations, particularly for the query. In this
context, the representing features for the subshots are computed as
the mean of the respective descriptors for the individual frames.

4.5 Querying Similar Segments
Among the described features, the analyst chooses weights as the
basis for finding similar segments on the subshots. The weighted
sum of the associated measures constitutes the final similarity be-
tween subshots. The querying procedure is implemented in terms
of a fuzzy, variable length search. Figure 5 depicts how the query is
processed. Given a manually selected time span q consisting of n
subshots that contain the activity to search for, our query process-
ing consists of two steps: (1) finding seeds in terms of segments
that have the same number of subshots (i.e., the same length in
terms of subshots) as q and achieve a high similarity (above some
threshold Tseed); (2) applying region growing [Adams and Bischof

1994] on each of these seeds to allow for resulting segments of a
different length as q.

Finding Seeds. To find the seeds of segments that are similar to
the selection q consisting of n subshots, we apply a sliding window
in temporal direction. For each window, we compute the n similari-
ties between corresponding subshots at each position of the current
window and each corresponding position of the query segment.
The sum of weighted means of these element-wise similarities gives
the similarity of the window. Each window whose similarity lies
above a user-defined threshold is considered as seed segment.

Region Growing. In the previous step, we obtained segments that
cover only as many subshots as the selection q contains. In general,
the length of similar activities may vary and include more subshots
than the selected example. Hence, we allow extending the segments
of fixed length into segments of arbitrary length by region growing.
To this end, we compute features that represent the whole segment
instead of its constituting subshots and iteratively merge those
neighboring segments that show a high similarity with respect to
their features. This iterative method allows obtaining segments that
are not restricted to a specific length.

The analyst can adjust the weights of the features guided by the
calculated threshold histograms (Figure 2) and restart the search.
Please note that it is possible to use differently weighted features
for the seeding step and the region growing step. For example, one
can apply a sparse but unique feature for seeding and a denser but
less unique feature for growing.

5 CASE STUDY
The case study demonstrates the workflow of our approach. We
showcase it for a dataset recorded for activity recognition, demon-
strate how different activities can be annotated, and how the se-
quence of annotations can be interpreted with higher semantic
abstraction on a behavior level.

5.1 Dataset
Our approach is designed for long-term video of unconstrained
gaze, for example from pervasive eye tracking scenarios. The first
long-term pervasive eye tracking dataset of this kind was presented
by Steil and Bulling [2015]. Participants were encouraged to create
day-long recordings with a mobile eye tracking system but were
not restricted to a specific time frame or activity. The resulting
data was captured as egocentric video (1280×720 pixels) and a
gaze stream, both recorded at 30Hz with Pupil Labs mobile eye
trackers. On average, participants recorded more than eight hours
of their daily lives. This data was then annotated manually with
eight activity classes: outdoor, social interaction, concentrated work,
mobile, reading, computer work, watching media, eating. We consider
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Figure 6: Thumbnails (reading) with purple top bars have already been annotated. Adjusting the feature weights and similarity
threshold yielded fewer false positives than in Figure 2. We can also identify segments of computer work.

these existing annotations as ground truth and investigate a single
recording from a random participant. It is approximately seven
hours long and occupies about 5GiB of video storage. The gaze
information is stored in text format (CSV) and takes 213MiB. In
its current, not parallelized, implementation and with commodity
hardware, the preprocessing of the data takes approximately 50%
longer than the original video duration.

5.2 Task: Annotation of Activities
For the annotation of activities that fit in the predefined classes
(Section 5.1), we start at the beginning of the recording and select
the first three hours on the overview layer of the timeline. The
framework highlights our selection with a box (Figure 2, time span
selection) and the next layer zooms in on this time range.

Example Selection. Scrolling through the subshot thumbnails at
the top, we identify a long segment in which the participant seems
to focus on sheets of paper. Hovering over the preview thumbnails
starts the video playback and confirms that they contain a similar
activity. We want to annotate these subshots as reading. To this
end, we follow the connectors below the thumbnails to select the
targeted subshots (Figure 2, query selection) on the second zoom
layer of the timeline (approximately 72 seconds).

Feature-Based Search. The framework automatically performs a
search for matching seed segments and highlights the correspond-
ing time ranges with violet background color on the overview time
line. This gives us an overview of their temporal distribution (Fig-
ure 6, initial query results). The results are sorted by similarity and
also shown as thumbnails in the query result view.

Guided Refinement. With the default weight parameters and
thresholds, the query yields 595 seeds that cover large portions
of the available data. We use weak region growing to merge over-
lapping results and get a shorter list of 111 elements. We notice

that some results are false positives because they do not match
our definition of reading. For example, the participant is drinking
from a cup (Figure 6, false positive). To reduce such false positives,
we refine the weight parameters for the query. The guidance his-
tograms show how weight changes on the features will affect the
result count. Because reading can be inferred from eye movements
alone [Campbell and Maglio 2001], we increase weights on fixa-
tion duration and count. Based on the assumption that the head
and sheets of paper will not move much during reading, we also
increase the weight of the motion magnitude (first refinement step).
The updated results (refined results 1) contain fewer segments than
the initial query, but there are still some that do not match our tar-
get activity. We increase the similarity threshold for seeds (second
refinement step) to further reduce the number of retrieved results.
By re-applying region growing, time spans with reading activity
(refined results 2) are extended and merged into more coherent seg-
ments. We manually annotate matching thumbnails with the label
reading (final query results). A corresponding color is assigned to
the thumbnail and the annotations become visible in the scarf plots.

During the annotation of reading, we notice results in which the
participant did computer work, another predefined activity class
(Section 5.2). We click on this result to scroll the timeline’s preview
layer to the current segment and select all included subshots from
the second zoom layer of the timeline. Based on this selection, we
can now continue annotating time spans when computer work was
done. As an example, feature weights on the frame structure can
be increased to find all occurrences of the laptop.

So far, we have investigated similar video segments with a focus
on gaze and frame structure metrics. The motion features (Sec-
tion 4.1) help us identify another class: mobile. We can search for
segments where the participant is in motion, e.g., walking through
a corridor. We select a time range of 13 seconds with this target
activity as input for a query. Weights for gaze metrics and frame
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(a) (b)

(c) (d)

Figure 7: Searching for travel through a corridor. Thumb-
nails (a) and (b) are query results. Spectrograms (c) and (d)
show length (amplitude) and binned direction (color: left,
right, up, down) of motion vectors in the video.

structure are set to zero, as we are only interested in the movement
pattern. We also set the spectrogram to render motion direction
(Figure 7c and d). Using the guide on the threshold for seed seg-
ments (similar to Figure 6), we set the value to 85% and apply
region growing to reduce the number of results to four elements.
The first one contains the original selection but goes further and
encompasses the entire walk to the destination (Figure 7a). The
second result (b) is the walk back through the same corridor and to
the participant’s start location. We discard the remaining results as
they are movement resulting from social interaction and turning
sheets of paper. Our supplemental video provides further details.

6 NOVICE AND EXPERT FEEDBACK
We let two novices and two domain experts annotate the video
from the dataset (Section 5.1) with our implemented prototype.
The novices are students of computer science (N1, N2) with little
experience in the fields of information visualization, video annota-
tion, and eye tracking. The domain experts (E1, E2) are from our
institute, but not involved in this paper otherwise, they have two
and nine years of experience in the analysis of eye tracking data,
respectively. The four participants’ age ranged from 25–32, and two
of them were female. In individual sessions, we first introduced
the prototype for 30 minutes and then asked the participants to
perform an annotation task. For time reasons, we restricted the
annotation time to one hour and limited the number of categories
to annotate while maintaining coverage of all available metrics:
(1) reading (eye tracking), (2) outside (image features), (3) mobile
(optical flow). During the task, thinking aloud was encouraged and
logged. After the task, we handed out questionnaires to collect
additional feedback. Although the number of participants is too
small for an extensive quantitative evaluation, our task describes
a realistic scenario where multiple annotators label a dataset and
their agreement is measured.

Comparison of Results. All participants were able to perform the
task with our prototype. We compared the annotation results with
ground truth from the original dataset (see Table 1). Please note that

Table 1: Comparison between the participants’ annotations
and the original data set. We calculated the performance as
precision, recall, F1-score, and Jaccard similarity index SJ.

User Label Precision Recall F1-Score SJ
outdoor 1.000 0.873 0.932 0.873

N1 mobile 0.376 0.651 0.476 0.313
reading 0.909 0.485 0.632 0.463
outdoor 0.931 0.954 0.942 0.891

N2 mobile 0.225 0.611 0.329 0.197
reading 0.942 0.766 0.845 0.732
outdoor 0.983 0.912 0.946 0.898

E1 mobile 0.423 0.404 0.413 0.261
reading 0.996 0.418 0.589 0.417
outdoor 0.975 0.922 0.948 0.900

E2 mobile 0.822 0.247 0.380 0.235
reading 0.957 0.482 0.641 0.472

N1

N2

E1

E2

Figure 8: Comparative scarf plots for multi-user annotation.
Time spans can be investigated individually to resolve ambi-
guities. Categories: mobile, reading, and outdoor.

the annotated data we compared against was labeled over several
hours. Sessions were limited to one hour and participants could
achieve good results for outdoor (high precision and recall) and
partially for reading activities (high precision, lower recall). For
the label mobile, precision and recall were lower in comparison to
the other categories. Lower scores mainly result from ambiguous
definitions of mobile behavior and from incomplete annotations
in all categories. Such differences in the labeled results show the
necessity of assessing a multi-annotator agreement by quantitative
measures and sequential visual analysis (T2). We support this com-
parison in our visualization by loading a reference annotation for
comparison. The scarf plots (Figure 8) display the annotations and
individual differences become visible.

Visualization Assessment. We asked the participants to assess the
individual components based on their usefulness (Figure 9). Overall,
the thumbnail-based representation of segments was deemed use-
ful. The components considering the timeline visualization were
also assessed positively, whereas the query results and the feature
weights received mixed scores. From the think aloud protocols and
our observations, we derived that the query was often used to iden-
tify similar time spans in the beginning. Based on this selection,
participants labeled correct results first and then tended to linearly
check the timeline for missing results. E2 was an exception because
initially the annotation was done almost linearly until there was
enough trust and experience with the query results. The feature
spectrograms were mainly used to identify the borders of an activ-
ity. Considering the query interface, the participants mentioned
room for improvement in the intuitiveness and usability of the
query results and feature weights. The novices needed more time
to familiarize themselves with the available spectrograms and fea-
ture weights. The domain experts felt confident in their use for the
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Figure 9: Participants’ agreement with the statement “The
components are useful”, on a Likert scale from (1) I do not
agree at all – (5) I agree completely.

query and found the histograms for visual guidance helpful for the
necessary adjustments. The experts were able to use their existing
domain knowledge and the spectrograms to visually search for
similar video sequences or get an overview by scrolling through
the thumbnails. For the query results, the participants wished for
more filtering options, e.g., showing only segments that contained
subshots or segments with a specific annotation. The inclusion of a
large video player and keyboard shortcuts was stated, which might
be related to previous experience with video editing tools. N1 found
it difficult to select specific time ranges, whereas E1 and E2 would
have liked more time to familiarize themselves with the tool.

7 DISCUSSION
We see the support for long-term eye tracking and video data as the
main advantage of our approach. Our experiments in the context
of the presented case study helped us identify the advantages of
the approach and some points for further research.

Interface Complexity. From the feedback, we identified that the
use of the feature weights is more suited for experts with back-
ground knowledge on gaze-based properties. However, the two
inexperienced computer science students could still achieve com-
parable annotation results, with the difference that some results
could have been identified more efficiently by feature weight ad-
justment. As a consequence, we plan to include a simplified mode
with constant weights where only the seed value can be adjusted.

Precision and Recall. Our approach intends to engage the user in
visual analytics instead of relying on automatic annotation methods.
In annotation scenarios, the fact that no ground truth is available
in the beginning complicates the assessment of the precision of the
search with current parameter weights. We see the advantage of
visual analytics in the human capability to identify false positives
efficiently. Hence, our approach focuses more on high recall with an
iterative removal of wrong results. Between the false positives, the
correct results can be validated visually by the analyst. As our case
study shows, the initial query with equally weighted features often
results in sequences covering the majority of the timeline ensuring
high recall. Users can reduce the query response through guided
parameter refinement and annotate the relevant time spans. One
additional point for an extension on the query is the current concept
of variable length search (Section 4.5). In the presented approach,
the concept of selecting smaller sequences of subshots and search
for longer sequences was designed intentionally. However, if other
scenarios require an inverse strategy in the future, i.e., the analyst
selects a long sequence and retrieves shorter sequences, the current
implementation can be extended accordingly.

Annotation Efficiency. We demonstrated in our case study (Sec-
tion 5.2) that it is possible to efficiently handle at least 7.5 hours of
real-world data on commodity hardware. For the case study, we
were able to annotate over 1.5 hours in 3 minutes, underlining the
fact that analysts are able to annotate efficiently with our approach
(T1). This was confirmed in our feedback sessions with novices and
experts (Section 6). Because queries are performed on the entire
video, it allows annotation of all matching time spans right from
the result view. This enables analysts to stay focused on the anno-
tation of a single activity. They do not have to search through time
spans with multiple actions and can limit their workload to a single
question: Is this still the same activity as the one I selected for the
query? There is no need for frequent switches of mental context,
thus allowing for efficient annotation of long-term video. As the
amount of labeled subshots increases, the scarf plot becomes more
populated and allows for quick identification of unprocessed time
spans and for interpreting annotated sequences visually (T2).

Data Quality. One additional finding that was not initially con-
sidered in our design, is the ability of our approach to identify issues
with the data effectively. We found two instances of a corrupt gaze
stream by using the spectrograms for saccade directions. In the first
one, the video preview shows how the participant covers the camera
for privacy reasons, leading also to erroneous gaze data. The second
case exhibits low saccadic movement and high fixation durations.
The gaze point on the video preview is stationary, whereas the
participant is mobile. This disparity suggests that the eye tracker
was not able to record a correct gaze position. The combination
of sensor modalities, time series visualization, video preview, and
interaction methods gives analysts the means to quickly identify
anomalous data and find an explanation for it.

8 CONCLUSION
In this work, we proposed the first visual analytics approach to anno-
tate pervasive eye tracking data and egocentric video recorded over
long time periods from individual users. Our case study showed that
the direct visual interpretation of annotated time spans supports
findings for specific behavior that are otherwise hard to achieve.
Based on user feedback (Section 6), we already added new filter op-
tions for the query results. We further plan to extend our approach
for multiple participants. Our visual design supports the integra-
tion of numerous timelines, allowing scalability for an increasing
number of participants. Furthermore, we then plan to evaluate
the annotation performance once it is possible to analyze multiple
videos in parallel. We hypothesize that with our approach, the cog-
nitive load on the annotator will be reduced and the annotation
time will be shorter than with a linear approach where activities
have to be labeled in sequential order for each video individually. In
conclusion, with eye tracking becoming ubiquitous, new methods
for visual analytics of long-term video and unconstrained gaze data
will be required. The presented approach is the first step to handle
such data for annotation and behavior analysis.

ACKNOWLEDGMENTS
We thank the German Research Foundation (DFG) for financial
support within projects A07, B01, and B04 of SFB/Transregio 161.



Visual Analytics and Annotation of Pervasive Eye Tracking Video ETRA ’20 Full Papers, June 2–5, 2020, Stuttgart, Germany

REFERENCES
Rolf Adams and Leanne Bischof. 1994. Seeded Region Growing. IEEE Transactions on

Pattern Analysis and Machine Intelligence 16, 6 (1994), 641–647.
Juan David Adarve and Robert Mahony. 2016. A Filter Formulation for Computing Real

Time Optical Flow. IEEE Robotics and Automation Letters 1, 2 (2016), 1192–1199.
Wolfgang Aigner, Silvia Miksch, Heidrun Schumann, and Christian Tominski. 2011.

Visualization of Time-Oriented Data. Springer, London.
Herbert Bay, Andreas Ess, Tine Tuytelaars, and Luc Van Gool. 2008. Speeded-up Robust

Features (SURF). Computer Vision and Image Understanding 110, 3 (2008), 346–359.
Tanja Blascheck, Markus John, Kuno Kurzhals, Steffen Koch, and Thomas Ertl. 2016.

VA2: A Visual Analytics Approach for Evaluating Visual Analytics Applications.
IEEE Transactions on Visualization and Computer Graphics 22, 1 (2016), 61–70.

Tanja Blascheck, Kuno Kurzhals, Michael Raschke, Michael Burch, Daniel Weiskopf,
and Thomas Ertl. 2017. Visualization of Eye Tracking Data: A Taxonomy and
Survey. Computer Graphics Forum 36, 8 (2017), 260–284.

Marc Bolanos, Mariella Dimiccoli, and Petia Radeva. 2017. Toward Storytelling from
Visual Lifelogging: An Overview. IEEE Transactions on Human-Machine Systems
47, 1 (2017), 77–90.

Ralph P. Botchen, Sven Bachthaler, Fabian Schick, Min Chen, Greg Mori, Daniel
Weiskopf, and Thomas Ertl. 2008. Action-based Multifield Video Visualization.
IEEE Transactions on Visualization and Computer Graphics 14, 4 (2008), 885–899.

Thomas Brox, Andrés Bruhn, Nils Papenberg, and Joachim Weickert. 2004. High
Accuracy Optical Flow Estimation Based on a Theory for Warping. In Computer
Vision - ECCV 2004. Lecture Notes in Computer Science. Vol. 3024. Springer, Berlin,
Heidelberg, 25–36.

Andreas Bulling andHans Gellersen. 2010. TowardMobile Eye-basedHuman-computer
Interaction. IEEE Pervasive Computing 9, 4 (2010), 8–12.

Andreas Bulling, Jamie A. Ward, Hans Gellersen, and Gerhard Troster. 2011. Eye
Movement Analysis for Activity Recognition Using Electrooculography. IEEE
Transactions on Pattern Analysis and Machine Intelligence 33, 4 (2011), 741–753.

Andreas Bulling, ChristianWeichel, andHansGellersen. 2013. EyeContext: Recognition
of High-level Contextual Cues from Human Visual Behaviour. In Proceedings of the
ACM SIGCHI Conference on Human Factors in Computing Systems. 305–308.

Lee Byron and Martin Wattenberg. 2008. Stacked Graphs – Geometry & Aesthetics.
IEEE Transactions on Visualization and Computer Graphics 14, 6 (2008), 1245–1252.

Christopher S. Campbell and Paul P. Maglio. 2001. A Robust Algorithm for Reading
Detection. In Proceedings of the Workshop on Perceptive User Interfaces. 1–7.

Alexandros André Chaaraoui, Pau Climent-Pérez, and Francisco Flórez-Revuelta. 2012.
A Review on Vision Techniques Applied to Human Behaviour Analysis for Ambient-
assisted Living. Expert Systems with Applications 39, 12 (2012), 10873–10888.

Alireza Fathi, Ali Farhadi, and James M. Rehg. 2011. Understanding Egocentric Ac-
tivities. In Proceedings of the IEEE International Conference on Computer Vision.
407–414.

Gregory D. Hager and Peter N. Belhumeur. 1996. Real-time Tracking of Image Regions
with Changes in Geometry and Illumination. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 403–410.

Susan Havre, Elizabeth Hetzler, Paul Whitney, and Lucy Nowell. 2002. ThemeRiver:
Visualizing Thematic Changes in Large Document Collections. IEEE Transactions
on Visualization and Computer Graphics 8, 1 (2002), 9–20.

Mary Hayhoe and Dana Ballard. 2005. Eye Movements in Natural Behavior. Trends in
Cognitive Sciences 9, 4 (2005), 188–194.

Keita Higuchi, Ryo Yonetani, and Yoichi Sato. 2017. Egoscanning: Quickly Scanning
First-person Videos with Egocentric Elastic Timelines. In Proceedings of the ACM
SIGCHI Conference on Human Factors in Computing Systems. 6536–6546.

Benjamin Höferlin, Markus Höferlin, Gunther Heidemann, and Daniel Weiskopf. 2015.
Scalable Video Visual Analytics. Information Visualization 14, 1 (2015), 10–26.

Kenneth Holmqvist, Marcus Nyström, Richard Andersson, Richard Dewhurst, Halszka
Jarodzka, and Joost Van de Weijer. 2011. Eye Tracking: A Comprehensive Guide to
Methods and Measures. Oxford University Press, Oxford UK.

Weiming Hu, Nianhua Xie, Li Li, Xianglin Zeng, and S. Maybank. 2011. A Survey on
Visual Content-based Video Indexing and Retrieval. IEEE Transactions on Systems,
Man, and Cybernetics 41, 6 (2011), 797–819.

Halld’or Janetzko, Dominik Sacha, Manuel Stein, Tobias Schreck, Daniel A. Keim,
and Oliver Deussen. 2014. Feature-Driven Visual Analytics of Soccer Data. In
Proceedings of the IEEE Conference on Visual Analytics Science and Technology. 13–
22.

Waqas Javed and Niklas Elmqvist. 2010. Stack Zooming for Multi-focus Interaction
in Time-series Data Visualization. In Proceedings of the IEEE Pacific Visualization
Symposium. 33–40.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet Classification
with Deep Convolutional Neural Networks. In Advances in Neural Information
Processing Systems 25. Curran Associates, Inc., 1097–1105.

Kai Kunze, Masakazu Iwamura, Koichi Kise, Seiichi Uchida, and Shinichiro Omachi.
2013. Activity Recognition for the Mind: Toward a Cognitive “Quantified Self”.
Computer 46, 10 (2013), 105–108.

Kuno Kurzhals, Marcel Hlawatsch, Christof Seeger, and Daniel Weiskopf. 2017. Visual
Analytics for Mobile Eye Tracking. IEEE Transactions on Visualization and Computer

Graphics 23, 1 (2017), 301–310.
Kuno Kurzhals, Markus John, Florian Heimerl, Paul Kuznecov, and Daniel Weiskopf.

2016. Visual Movie Analytics. IEEE Transactions on Multimedia 18, 11 (2016),
2149–2160.

Kuno Kurzhals and Daniel Weiskopf. 2015. Eye Tracking for Personal Visual Analytics.
IEEE Computer Graphics and Applications 35, 4 (2015), 64–72.

Yong Jae Lee, J. Ghosh, and K. Grauman. 2012. Discovering Important People and
Objects for Egocentric Video Summarization. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 1346–1353.

David G. Lowe. 2004. Distinctive Image Features from Scale-invariant Keypoints.
International Journal of Computer Vision 60, 2 (2004), 91–110.

Prithiviraj K. Muthumanickam, Camilla Forsell, Katerina Vrotsou, Jimmy Johansson,
and Matthew Cooper. 2016. Supporting Exploration of Eye Tracking Data: Identify-
ing Changing Behaviour Over Long Durations. In Proceedings of the Workshop on
Beyond Time and Errors on Novel Evaluation Methods for Visualization. 70–77.

Prithiviraj K. Muthumanickam, Katerina Vrotsou, Aida Nordman, Jimmy Johansson,
and Matthew Cooper. 2019. Identification of Temporally Varying Areas of Interest
in Long-duration Eye-tracking Data Sets. IEEE Transactions on Visualization and
Computer Graphics 25, 1 (2019), 87–97.

Keisuke Ogaki, Kris M. Kitani, Yusuke Sugano, and Yoichi Sato. 2012. Coupling
Eye-Motion and Ego-Motion Features for First-Person Activity Recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops. 1–7.

Thies Pfeiffer, Patrick Renner, and Nadine Pfeiffer-Leßmann. 2016. EyeSee3D 2.0:
Model-based Real-time Analysis of Mobile Eye-tracking in Static and Dynamic
Three-dimensional Scenes. In Proceedings of the Symposium on Eye Tracking Research
and Applications. 189–196.

Yair Poleg, Chetan Arora, and Shmuel Peleg. 2014. Temporal Segmentation of Egocen-
tric Videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2537–2544.

Mario Romero, Jay Summet, John Stasko, and Gregory Abowd. 2008. Viz-a-vis: Toward
Visualizing Video through Computer Vision. IEEE Transactions on Visualization
and Computer Graphics 14, 6 (2008), 1261–1268.

Klaus Schoeffmann, Mario Taschwer, and Laszlo Boeszoermenyi. 2010. The Video
Explorer: A Tool for Navigation and Searching within a Single Video Based on
Fast Content Analysis. In Proceedings of the ACM SIGMM Conference on Multimedia
Systems. 247–258.

Julian Steil and Andreas Bulling. 2015. Discovery of Everyday Human Activities
from Long-term Visual Behaviour Using Topic Models. In Proceedings of the ACM
International Joint Conference on Pervasive and Ubiquitous Computing. 75–85.

Julian Steil, Michael Xuelin Huang, and Andreas Bulling. 2018. Fixation Detection
for Head-Mounted Eye Tracking Based on Visual Similarity of Gaze Targets. In
Proceedings of the Symposium on Eye Tracking Research and Applications. 23:1–23:9.

Michael Stoll, Sebastian Volz, and Andrés Bruhn. 2013. Adaptive Integration of Feature
Matches into Variational Optical Flow Methods. In Computer Vision – ACCV 2012.
Lecture Notes in Computer Science. Vol. 7726. Springer, Berlin, Heidelberg, 1–14.

Hoi Ying Tsang, Melanie Tory, and Colin Swindells. 2010. eSeeTrack: Visualizing
Sequential Fixation Patterns. IEEE Transactions on Visualization and Computer
Graphics 16, 6 (2010), 953–962.

Pavan Turaga, Rama Chellappa, Venkatramana S. Subrahmanian, and Octavian Udrea.
2008. Machine Recognition of Human Activities: A Survey. IEEE Transactions on
Circuits and Systems for Video Technology 18, 11 (2008), 1473–1488.

MichaelWörner and Thomas Ertl. 2011. Smoothscroll: AMulti-Scale, Multi-Layer Slider.
In International Conference on Computer Vision, Imaging and Computer Graphics.
Springer, Berlin, Heidelberg, 142–154.

Sergey Zagoruyko andNikos Komodakis. 2015. Learning to Compare Image Patches Via
Convolutional Neural Networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 4353–4361.

Dengsheng Zhang, Md Monirul Islam, and Guojun Lu. 2012. A Review on Automatic
Image Annotation Techniques. Pattern Recognition 45, 1 (2012), 346–362.


	Abstract
	1 Introduction
	2 Related Work
	3 Visual Analytics Interface
	4 Data Analysis Support
	4.1 Video Features
	4.2 Gaze Features
	4.3 Similarity Measures
	4.4 Data Preprocessing
	4.5 Querying Similar Segments

	5 Case Study
	5.1 Dataset
	5.2 Task: Annotation of Activities

	6 Novice and Expert Feedback
	7 Discussion
	8 Conclusion
	Acknowledgments
	References

