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ABSTRACT 
Mobile gaze-based interaction with multiple displays may 
occur from arbitrary positions and orientations. However, 
maintaining high gaze estimation accuracy still represents a 
significant challenge. To address this, we present GazePro-
jector, a system that combines accurate point-of-gaze esti-
mation with natural feature tracking on displays to deter-
mine the mobile eye tracker’s position relative to a display. 
The detected eye positions are transformed onto that display 
allowing for gaze-based interaction. This allows for seam-
less gaze estimation and interaction on (1) multiple displays 
of arbitrary sizes, (2) independently of the user’s position 
and orientation to the display. In a user study with 12 par-
ticipants we compared GazeProjector to existing well-
established methods such as visual on-screen markers and a 
state-of-the-art motion capture system. Our results show 
that our approach is robust to varying head poses, orienta-
tions, and distances to the display, while still providing high 
gaze estimation accuracy across multiple displays without 
re-calibration. The system represents an important step 
towards the vision of pervasive gaze-based interfaces. 
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INTRODUCTION 
Gaze is a powerful modality for interacting with the rapidly 
increasing number of public displays around us. Gaze natu-
rally indicates what we visually attend to and what we are 
interested in [28], and is faster than other pointing devices 
such as a mouse [21]. Consequently, gaze-based interaction 
received considerable attention with applications ranging 
from controlling desktops [31, 13], eye typing [17], to tar-
get selection [26], and password entry [7]. Recent advances 
in mobile eye tracking point the way towards unobtrusive 
interfaces that will allow us to interact with gaze in every-
day settings [6]. A key challenge with such pervasive gaze-
based interfaces is how spontaneous and transparent gaze-
based interaction can be facilitated on arbitrary displays. 

Monocular head-mounted eye trackers are typically 
equipped with two cameras: a scene camera that captures 
part of the user’s current field of view, and an eye camera 
that records a close-up video of the user’s pupil position 
and eye movements. Such eye trackers have to be calibrated 
to a specific user for a specific display before first use. The 
calibration establishes a mapping between 2D pupil posi-
tions and 2D positions in the scene camera’s coordinate 
system. For gaze-based interaction with displays in the 
environment, these scene camera coordinates have to be 
mapped further to corresponding 2D gaze positions on the 
displays. During operation, arbitrary on-screen gaze posi-
tions can then be estimated by interpolating between known 
calibration points. 
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Figure 1. GazeProjector enables seamless gaze-based interaction with multiple displays from arbitrary locations and orientation, 

such as wall-sized displays (a), horizontal interactive screens (b), and handheld devices (c) – without active recalibration. 

 



The problem with head-mounted eye trackers is that this 
calibration is typically performed for a fixed position and 
orientation of the user to a particular display. While this is 
less of an issue for stationary settings and TV-sized dis-
plays, mobile everyday-life settings and multiple – poten-
tially large – displays evoke two types of motion: (1) user 
movements in front of a single display to inspect other parts 
of the display’s content; and (2), head movements to reach 
targets outside of the ocular motor range [10]. In addition, 
there might be multiple displays present, evoking further 
movements. These types of motion considerably reduce 
gaze estimation accuracy [8]. This problem has been ad-
dressed by tracking the eye tracker relative to a particular 
display by augmenting the environment with visual markers 
[30, 5] or using vision-based motion capturing systems 
(e.g., OptiTrack1). Although these approaches provide high 
tracking accuracy, they are impractical for spontaneous 
gaze interaction, particularly when interacting with multiple 
displays in mobile everyday-life scenarios. Similarly, mark-
er-free trackers, such as the Kinect, work well for tracking 
coarse user position but are not accurate enough to track 
head orientation and fail when people occlude each other. 

In this paper we present GazeProjector, a system that al-
lows for accurate gaze estimation on arbitrary displays 
independently of the user’s position and orientation (see 
Figure 1). GazeProjector requires a one-time calibration of 
the head-mounted eye tracker per user, so that the user’s 
pupil position can be mapped to positions in the scene cam-
era’s coordinate system. The calibration can be performed 
on any display and not necessarily on the display the user 
wants to interact with. Afterwards, the system automatically 
transforms this calibration to other positions and displays in 
real-time. In contrast to previous approaches, GazeProjec-
tor does not require a heavyweight motion capturing system 
or visual markers. Instead,  the eye tracker continuously 
tracks itself relative to different displays using natural fea-
ture tracking. GazeProjector therefore enables seamless 
gaze estimation and interaction across different displays, 
and allows users to freely move around in front of them 
while maintain a high gaze estimation accuracy. 

In a controlled laboratory experiment with 12 participants, 
we compared our approach to a state-of-the-art OptiTrack 
motion capturing system as well as a marker-based ap-
proach. In the first task, participants looked at on-screen 
targets from various positions and orientations in front of a 
large display. In a second task, we compared GazeProjector 
to the marker-based approach on multiple displays (here: a 
wall-sized display, a tabletop, and a tablet PC). In both 
tasks, we found that our approach compensated well for 
head movements (i.e., change of orientation) and user relo-
cation (i.e., change of location). 

RELATED WORK 

                                                             
1 https://www.naturalpoint.com/optitrack/ 

Our work builds on methods for (1) gaze approximation 
and estimation on displays, (2) gaze interaction using head-
mounted eye trackers, as well as (3) tracking the spatial 
relationship between users and displays. 

Gaze Approximation and Estimation on Displays 
Several previous works used head orientation as an approx-
imation of where people look. For example, Sippl et al. 
used a remote camera to detect facial features, such as eyes 
and nose tip, and estimate head pose on four areas on the 
display [22]. Nakanishi et al. relied on a stereo face tracking 
system and the 3D head pose as an approximation of gaze 
direction [19]. Finally, ViewPointer aimed to detect eye 
contact between users and devices using a wearable camera 
and IR tags placed in the environment [24]. While useful 
for coarse attention measurements, none of these approach-
es allowed for accurate gaze estimation on the display. 

Accurate gaze estimation on displays remains a significant 
challenge – particularly when remote eye trackers (i.e., eye 
trackers placed in front of a display) are used. Such trackers 
only allow a single user to interact with a display at any 
point in time and any interaction is restricted to the tracking 
range of typically 50-80 cm in a central area in front of the 
display, thereby severely limiting users’ mobility [23, 26]. 
Previous work either focused on extending the tracking 
range of remote trackers [11, 18], or on calibration-free 
(spontaneous) interaction but was either limited to interac-
tion along a horizontal axis, i.e., without full 2D gaze esti-
mation [32] or required dynamic interfaces [29]. None of 
these works addressed the problem of users interacting with 
the display from different positions and orientations. 

Gaze Interaction Using Head-mounted Eye Trackers 
Head-mounted eye trackers are more flexible as they allow 
the user to move freely in front of the display. Early work 
on using head-mounted eye trackers for interaction still 
required calibration to a single, stationary display prior to 
first use [9]. More recent approaches aimed to estimate gaze 
dynamically but either required visual markers to be at-
tached to the display [30] or in the environment to detect 
gaze on a set of pre-defined interaction areas, e.g., to con-
trol a TV set or music player [5].  

With advances in computer vision, visual markers could be 
substituted with detecting the display directly in the scene 
camera’s field of view. Mardanbegi et al. described an 
approach to detect screens based on quadrilaterals found in 
the scene [16]. Turner et al. extended that work to multiple 
displays (based on the displays’ aspect ratios) by adding a 
second camera as well as a method for transparently switch-
ing between two calibrations [27]. However, in contrast to 
GazeProjector, both approaches required that the display 
was fully visible in the scene camera’s fields of view, 
which is problematic when users are mobile or close to a 
very large display. Furthermore, relying on a set of auto-
matically selected key points and features instead of screen 
borders is more robust to changing light conditions and 
generalizes better to displays of arbitrary shape and size. 



Tracking Spatial Relationships of Users and Displays 
Tracking the spatial relationship of users (and the users’ 
devices respectively) can be done in two ways. First, exter-
nal tracking equipment can be used to determine a device’s 
exact position in 3D space (and thus its spatial relationship 
to a display in the environment). The Proximity Toolkit 
makes use of such high-precision tracking equipment and 
provides an interface to acquire spatial relationships [33]. 
While such a setup results in extremely high accuracy, it is 
often impractical for outdoor use. 

Alternatively the device’s camera can be used to identify its 
spatial relationship to a display. Many approaches exist, 
such as temporarily showing on-screen visual markers [2] 
or using dynamic markers following a camera’s position 
[20]. More recently, natural feature tracking was used to 
determine spatial relationships. Herbert et al. used Scale-
Invariant Feature Transform (SIFT) to determine the cam-
era’s spatial relationship to a display [12]. Their system 
tried to identify a screenshot of the display in the device’s 
camera stream. Virtual Projection extended this approach to 
dynamically updated displays [3]. Touch Projector further 
allowed for tracking multiple displays provided that display 
content differs sufficiently [4]. 

ENABLING GAZE INTERACTION ON LARGE DISPLAYS 
As mentioned before, estimating a user’s gaze on a large 
display and in multi-display environments using a head-
mounted eye tracker faces two challenges: the eye tracker 
has to be calibrated and used from fixed positions and ori-
entations for all displays. Furthermore, during calibration 
and use the entire display has to be visible in the eye track-
er’s scene camera. Ideally, the eye tracker only has to be 
calibrated once. This can be achieved by (1) calibrating 
pupil positions to the scene camera coordinate system; and 
(2) tracking the spatial relationship between the eye tracker 
and a specific display and (3) mapping 2D gaze positions in 
scene camera coordinate space to that display. 

Eye Tracker Calibration  
GazeProjector uses a one-time calibration to map pupil 
positions to the scene camera’s coordinate system. Because 
of this, there is no need to perform the calibration on the 
display one intends to interact with. Instead, the system can 
be calibrated once on any display in the environment (e.g., 
a laptop). This independence of the target display has two 
advantages: The calibration is not dependent on the distance 
and/or orientation to a display as this is handled by the self-
localisation directly; and the calibration does not depend on 
a single display, thus allowing for seamless gaze estimation 
across several displays in multi-display environments. 

Tracking the Spatial Relationship to Displays 
To determine the spatial relationship between the eye track-
er and a specific display we use the approach described in 
[3]. Specifically, our system streams the scene camera’s 
video to a server that is aware of all displays in the envi-
ronment as well as their displayed contents. All displays in 
the environment repeatedly stream screenshots to the server 

to reflect their current content (i.e., in case of quickly up-
dated content, such as videos). The server is thus only 
aware of the physical dimensions of each display (i.e., size 
and resolution) as well as their current content, but not their 
physical location. This is especially important for mobile 
devices, which frequently change their position and orienta-
tion over time. 

The server then processes the incoming screenshots as well 
as incoming frames from the field camera using FAST 
feature detectors [15] and FREAK feature descriptors [1]. 
The idea is to use current screenshots as template images, 
which the server tries to find in the observed images (here: 
the field camera’s video). If a template matches an observed 
image, the algorithm calculates the transformation matrix 
(i.e., a homography), which describes the transformation of 
points from one image plane (say: a video frame) into an-
other image plane (say: the display’s screenshot). 

Gaze Estimation 
As mentioned before, the transformation matrix allows for 
mapping locations in the scene camera coordinate system to 
the coordinate system of the target display and vice versa. 
In this procedure, the display does not have to be visible in 
full in the scene view. Instead, a sub-region is sufficient 
given enough features within that region to allow for robust 
tracking. Similar to Touch Projector (where touch positions 
are transformed), GazeProjector finally uses the transfor-
mation matrix to estimate gaze positions on the display. 

Implementation 
Our system consists of three components: (1) a monocular 
head-mounted eye tracker2 connected to a laptop [14]; (2) a 
10m2 back-projected display wall; and (3) a desktop com-
puter driving the display. Laptop and desktop computer are 
connected via Wifi. The eye tracking software on the laptop 
is written in Python and is based on PUPIL’s open source 
mobile eye tracking platform2. The software running on the 
desktop computer is written in C# (.NET Framework 4.5). 
For feature detection, description and matching, we use 
EmguCV3 as wrapper for OpenCV4. For faster processing, 
we downscale display screenshots to 384 × 240 pixels and 
camera frames to 320 × 240 pixels.  

The system allows for distances ranging from 0.5 times the 
display’s diagonal up to six times the display’s diagonal. 
When being further away, the accuracy decreases as the 
display observed in the camera’s field of view decreases in 
size (thus, removing several features). We believe that a 
multi-scale approach of screenshots will increase the opera-
tional range, yet we decided not to include it in this proof-
of-concept implementation. In addition, the tracking com-
pensates for an angular offset of ±60°. While this is suffi-
cient for most interactions, fast eye/head movements will 
have a slight impact on accuracy. However, we believe that 

                                                             
2 http://pupil-labs.com/pupil/ 
3 http://www.emgu.com/ 
4 http://opencv.org/  



the increasing processing capabilities of future devices will 
allow for both faster image processing on larger images 

(i.e., less or no scaling required) for higher accuracy. 

Example Application 
We built an example application to demonstrate the use of 
GazeProjector in a distributed multi-display environment 
(e.g., an urban public space). We chose such a setting, as it 

 underlines how people can make use of continuous gaze 
estimation with reasonable accuracy while freely moving 
around in the environment.  

Consider a timetable on one of the many large screens at an 
airport, showing flights departing within the next hours. 
Users can look at a specific flight and its flight number or 
destination respectively. Once the system recognizes the 
point users look at, additional information, such as a picture 
of the destination or detailed flight data, is transferred to the 
user’s mobile device (e.g., a tablet PC). GazeProjector 
further allows for tracking gaze also on the tablet, allowing 
for content adaptation. If the user now gazes at the picture, 
the tablet will show more specific information, such as the 
weather at the destination. Figure 2 shows the example 
application, and the video figure explains it in more detail. 

EXPERIMENT I: ASSESSING GAZE ESTIMATION 
We conducted a controlled laboratory study to assess 
GazeProjector’s gaze estimation accuracy in comparison to 
existing but more heavyweight approaches. 

Independent Variables 
We had two independent variables in this experiment: Mode 
(i.e., the gaze estimation method used), and Location (i.e., 
where participants stood in front of the display). 

Mode: We chose three different modes for gaze estimation: 
GazeProjector (GP) implemented as described before; 
Marker Tracking5 (MT), which uses a set of on-screen 
markers for tracking the orientation between the eye tracker 
and the display provided by the PUPIL framework; and a 
simple Head Orientation (HO) approach, which tracks the 
participant’s head using an external OptiTrack system. For 
each of these modes, we calibrated the eye tracker from two 
different locations. Both locations, however, were placed 
centrally in front of the display with one location being 
close to the display and one being further away. We further 
calibrated the eye tracker for each participant separately 
instead of using one calibration (see limitations section for 
further details). 

Location: We chose six different locations in front of the 
display to simulate a more realistic setting. Three of these 
locations were close to the display and three were further 
away. The eye tracker was only calibrated for the central 
near and far central locations. This is more realistic, as 
users would not calibrate for every position in a walk-in-
and-use scenario. Note that we calibrated the eye tracker for 
each participant separately instead of using one calibration 
(see limitations section for further details). Since no visual 
feedback was given to them and to keep the experiment at a 
reasonable length, participants had to perform the set of 
tasks only once. We then computed the gaze estimation 
accuracy post-hoc for each of the calibrations.  

Task & Procedure 
We implemented a gaze pointing task in which participants 
had to fixate nine different target locations represented as 
red circles on the display (see Figure 3). A pilot study 
showed that participants were affected by visualizing their 
gaze point on the display. Especially if the gaze position 
was incorrect, people tended to “move” the gaze point to 
compensate for the error. We therefore opted to not provide 
any visual feedback to the participants. Participants were 
instructed to look at each target as quickly and accurately as 
possible. Each target location was shown for five seconds. 

For each Mode, participants first calibrated from the near-
center location and performed the tasks for all other loca-
tions. Afterwards, the calibration for the far-center location 
was recorded and gaze positions as well as errors were 
evaluated post-hoc. Following best practices in gaze estima-
tion experiments, we validated all calibrations by asking 

                                                             
5 http://www.pupil-labs.com/blog/2013/12/036-release.html 

 
Figure 2. Our example application: when users select from a 
time table of departing flights (a), the corresponding infor-

mation is shown on their mobile device. 

 



participants to fixate once on each point on the same 9-
point pattern. At the end of the study we asked for demo-
graphic information. 

We collected gaze data from the eye tracker and transfor-
mation matrices calculated by GP as well as MT. Further-
more, we recorded data about the head position and orienta-
tion with OptiTrack. Data was sampled at 30 Hz (i.e., 150 
samples per on-screen target) leading to a total of 1350 
samples for each Mode and Location combination. We 
discarded samples for which participants’ pupil was not 
detected. We dropped the first two seconds (60 samples) for 
each target, which was the maximum time required to find 
the target All together we dropped 276.985 samples. In total 
we recorded 306.215 samples, 140.532 for GP, 165.683 for 
MT, which was the basis sample set used for HO. 

Experimental Design 
We used a within-subject design with the independent vari-
ables Mode (GP-near, GP-far, MT-near, MT-far, HO-near, 
HO-far) and Location (front-left, front-center, front-right, 
back-left, back-center, back-right).  

We counterbalanced the order of Location across partici-
pants using a Latin Square. Although it is possible to record 
all position information in parallel, we opted to have GP 
and MT separate, as markers would favor GazeProjector’s 
tracking. The HO mode was recorded while participants 
were using the MT mode. Half of our participants started 
with the MT, and the other half with GP. Thus, each partic-
ipant performed the task twice per location. For each mode 
and location, the nine targets (equally distributed in a 3 × 3 
grid on-screen) were presented in random order. 

 
Apparatus 
Figure 3 shows our experimental setup: we used a large 
front-projected wall with a size of 2.75 × 2.07 meters (diag-
onal: 3.44 meters). The six locations were distributed within 
a nine square meter area in front of the display as follows: 
three locations at a distance of 1.65 m (near), and three 
locations at a distance of 3.05 m (far). The left and right 
locations for near were exactly 2.33 meters away from the 

display’s centerline (i.e., an angular offset of ±45°); those 
for far were located 3.52 m away from the display’s center-
line (i.e., an angular offset of ±30°). Naturally, the two 
center locations for near and far had an angular offset of 0°. 
Locations located far allow participants to observe the en-
tire screen at once (the display covers 48.52°), while for 
locations located near the display covers 79.60° – thus 
exceeding the full-scale ocular motor range of ±55° [10]).  

Participants 
Twelve participants (three female) between 22 and 32 years 
(mean = 27.45 years, SD = 3.1 years) were recruited from a 
local university campus. All participants had normal or 
corrected to normal vision; none reported any form of visu-
al impairments (e.g., color blindness). 

GAZE ESTIMATION RESULTS 
We corrected all reported gaze estimation accuracies by 
subtracting the mean calibration error. The mean calibration 
error was 2.04° (SD = 0.69°). To verify that we could do so, 
we performed a one-way ANOVA with a Bonferroni-
corrected post-hoc analysis on calibration accuracies across 
all Modes, and found no significant differences. In all sub-
sequent post hoc analyses, we used Bonferroni-corrected 
confidence intervals to retain comparisons against α = 0.05. 
Furthermore, we used Greenhouse-Geisser correction in 
cases where sphericity had been violated. 

Gaze Estimation Error 
To assess the gaze estimation error, we calculated the aver-
age gaze estimation error in degrees of visual angle. That is, 
the difference of the visual angle between the predicted on-
screen gaze point and the actual fixation targets for all 
Modes and Locations. We then performed a 6 × 6 (Mode × 
Location) within subjects ANOVA on gaze estimation 
errors and found a main effect for Mode (F1.989,21.879 = 
8.526, p < .002), a main effect for Location (F5,55 = 7.363, p 
< .001), but we did not find an interaction between the two. 

We performed post-hoc tests to further understand the main 
effect of Mode. Most importantly, we found significant 
differences within MT and HO for the two calibrations near 
and far (all p < .033). In both cases, the near calibration led 
to lower estimation errors. GP, on the other hand, did not 
show such an effect, suggesting that the point of calibration 
does not effect its gaze estimation error significantly, and 
the difference in means was also lower than for the other 
two (GP: 0.281°; MT: 0.931°; HO: 0.948°) – yet, also for 
GP, the mean estimation errors were slightly lower for the 
near calibration than for the far one. 

This is further reflected when comparing across Modes: 
GP-near differed significantly from both MT-far and HO-
far (all p < .01). However, there was no significant differ-
ence between the Modes for the near calibration. Further-
more, GP-far did not differ significantly from any other 
Mode despite having relatively large differences in error. 

Overall, GP-near showed the lowest error (M = 1.80°, SD = 
0.20°), followed by GP-far (M = 2.08°, SD = 0.27°), and 

 
Figure 3. Experimental setup showing all locations L1-L6 and 
orientations relative to the display, as well as the nine different 

positions T1-T9 of the visual targets on the display. 



HO-near (M = 2.09°, SD = 0.23°). Also MT-near (M = 
2.23°, SD = 0.31°) has an estimated gaze error less than 3 
degrees. 

 
The other two Modes performed slightly worse and had an 
error of more than 3 degrees, MT-far (M = 3.16°, SD = 
0.32°) and HO-far (M = 3.04°, SD = 0.31°). Figure 4 sum-
marizes theses results. 

Post-hoc tests on Location revealed that the significant 
main effect stems from whether participants were farther 
away from the display or not: front-left differed significant-
ly from back-center and back-right (all p < .019). Front-
right also differed significantly from back-center (p < .011). 
Overall, back-center led to the least estimation errors (M = 
1.93°, SD = 0.23°), followed by back-right (M = 2.01°, SD 
= 0.17°), and back-left (M = 2.22°, SD = 0.30°). The front 
locations performed worse with front-center resulting in the 
least estimation errors (M = 2.45°, SD = 0.28°), followed by 
front-left (M = 2.86°, SD = 0.29°) and front-right (M = 
2.86°, SD = 0.30°). Thus, on average, the back locations 
had a lower estimation error of 2.08° (SD = 0.23°) com-
pared to the front locations with 2.72° (SD = 0.29°). 

 

Differences for On-screen Target Positions 
We did not expect high gaze estimation errors for each of 
the Modes. However, we wanted to analyze whether the on-
screen targets resulted in different estimation errors and 
thus analyzed the results separately for each on-screen tar-
get. For MT, we found no significant main effects on gaze 
estimation error for Target. We found the same for HO. 
Only for GP we found significant differences for gaze esti-
mation for Target. Our analysis revealed that predominantly 
the bottom-left target T7 differed significantly from few 
others (T2, T3, T6 and T8) and led to higher estimation 
errors. We assume that this is due to the scene camera see-
ing too few features, which in turn increased the error of the 
transformation matrix. Figure 5 shows gaze estimation 
errors for the different modes averaged over all targets.  

Eye and Head Movements 
We were further interested in whether participants mainly 
moved their head or their eyes to point at an on-screen 
target location. As expected [9], we found that the average 
normalized gaze position in the field camera’s video was x 
= 0.44 and y = 0.47 (SDx = 0.21; SDy = 0.25). Thus, gaze 
positions remained near the center of the participants’ field 
of view. We subsequently analyzed the gaze position for 
every Location in front of the display and found no signifi-
cant differences between them. The largest average differ-
ence was 0.03. Table 1 lists these results for each Location. 

Location Mean (x,y) SD (x,y) Var (x,y) 
front-left 0.43,0.45 0.19,0.24 0.038,0.060 
front-center 0.45,0.47 0.20,0.25 0.040,0.062 
front-right 0.46,0.46 0.22,0.27 0.052,0.076 
back-left 0.46,0.48 0.23,0.25 0.054,0.065 
back-center 0.45,0.48 0.20,0.24 0.044,0.058 
back-right 0.43,0.48 0.20,0.23 0.043,0.057 

Table 1. The table shows the mean, standard deviation and 
variance for the x,y-coordinates of normalized gaze positions 

in the participants’ field of view. 

The OptiTrack data provided detailed information of partic-
ipants’ head orientation  (HO). We found that the largest 
head turns covered the entire width of the display (far: 
51.2°, near: 83.66°). On average head motions covered an 
angle of 31.61° (SD = 2.04°). This further confirms our 
results in that HO might be a suitable approximation for 
gaze estimation with an average error of 2.09° (SD = 0.23°) 
for HO-near and 3.04° (SD = 0.31°) for HO-far. 

EXPERIMENT II: MULTIPLE DISPLAYS 
We conducted a second controlled laboratory study to as-
sess GazeProjector’s gaze estimation accuracy across mul-
tiple displays of varying form factors – with only a single 
calibration performed on one of the displays.  

Independent Variables 
We had two independent variables in this experiment: Mode 
(i.e., the gaze estimation method used), and Screen (i.e., on 
which display was the target shown). We did not use fixed 
positions as we wanted to create a more realistic scenario in 

 
Figure 4. Mean gaze estimation error for every location for 
MT-near, MT-far, HO-near, HO-far, GP-near and GP-far. 

 

Figure 5. Visualization the mean gaze error (ellipses) 
for the three modes MT, HO and GP and all calibra-
tions averaged over all targets. Additionally the mean 

gaze points are visualized by black circles. 



which participants were free to move in the space between 
the displays.  

Mode: In this experiment we chose to use only GazeProjec-
tor (GP) and Marker Tracking (MT), but not head orienta-
tion, as we believe it will perform similarly across displays. 
We again calibrated for two locations (as in the first exper-
iment), but additionally recorded calibrations on a 40” tab-
letop display (Surface), as well as on a 9.7” iPad Air tablet 
(iPad). We chose to do so to investigate the effects on gaze 
estimation accuracy of calibrating (1) on surfaces not or-
thogonal to the participant, and (2) on personal devices with 
a considerably smaller display. Particularly the latter re-
sembles a more realistic scenario in which users calibrate 
their eye tracker once on their personal device. As in exper-
iment I, calibrations were analyzed post hoc. 

Screen: In addition to the large display used in the first 
experiment (Wall), we chose to add the other two displays 
used for calibration as well (here: Surface, and iPad). 

Task & Procedure 
The task used in this experiment was the same as in the first 
one: participants had to fixate on-screen targets. However, 
since we had three displays, participants now had to acquire 
nine targets per display (27 in total) as shown in Figure 6 
As mentioned before, participants could freely choose and 
change their position between the displays. We again opted 
to not provide any feedback to participants for the same 
reasons as before. Participants were instructed to look at 
each target as quickly and accurately as possible. Each 
target location was shown for ten seconds to give the partic-
ipants enough time to find the target on the correct display. 
There was only one target on one display shown at a time. 

The procedure in this experiment was nearly the same as for 
the first experiment but with an additional calibration for 
Surface and iPad after all tasks were completed. On the 
additional displays we used the same 9-point calibration 
pattern. At the end of the study we asked for demographic 
information. 

We collected the same gaze data from the eye tracker as 
well as the transformation matrices from GP and MT as in 
the first experiment. Data was sampled at 30 Hz (i.e., 300 
samples for each target, 8100 samples for each Mode), and 
samples were discarded if the participants’ pupil was not 
detected. As we expected an increase in search time for the 
target, we dropped the first five seconds (150 samples) for 
each target. In total we recorded 259,745 samples: 124,421 
for GP, for 135,324 for MT. 

Experimental Design 
We used a within-subject 8 Mode (GP-near, GP-far, GP-
Surface, GP-iPad, MT-near, MT-far, MT-Surface, MT-
iPad) × 3 Screens (Wall, Surface, iPad) design. Half of our 
participants started with GP, the other half with MT (as in 
experiment I). The targets were randomized, thus the next 
target appeared on any of the three Screens. The 27 targets 

were again placed in 3 × 3 grids (i.e., nine per display) on 
each display. In total, participants acquired 54 targets. 

Apparatus 
We used the same front-projected Wall as in the first exper-
iment. In addition, we had a 40” Microsoft Surface 2 tab-
letop display (Surface), and a 9.7” iPad Air tablet (iPad). 
Figure 6 shows the setup including the tabletop and the 
tablet PC. The tabletop display was placed in front of the 
projection wall in an area where the participant would oc-
clude the beamer projection. Participants held the tablet in 
hand during the experiment. They could freely choose their 
location within a nine square meter area. 

 
MULTI-DISPLAY RESULTS 
We again corrected gaze estimation accuracy by subtracting 
the mean calibration error. The mean calibration error was 
2.18° (SD = 0.69°). We again verified that we could do so 
by performing an ANOVA with a Bonferroni-corrected 
post-hoc analysis on calibration accuracies across all 
Modes, and found no significant differences. As in experi-
ment I, we used Bonferroni-corrected confidence intervals 
in all post hoc analyses and Greenhouse-Geisser correction 
in cases where sphericity had been violated. 

Gaze Estimation Error 
We calculated the average gaze estimation error as in ex-
periment I and subsequently performed a 8 × 3 (Mode × 
Screen) within subjects ANOVA on them. We found main 
effects for Mode (F7,77 = 21.733, p < .001), and for Screen 
(F2,22 = 82.705, p < .001) as well as an interaction effect 
between the two (F14,154 = 9.100, p < .001). 

Post-hoc pairwise multiple means comparisons revealed 
that GP-near and GP-far differed significantly from MT-

 
Figure 6. Experimental setup showing the three used screens 
and the nine targets on each screen (wall, surface tabletop, 

iPad). Additionally the area (blue) is marked, where the user 
was free to choose the location. 



far, MT-Surface and MT-iPad (all p < .001). Furthermore, 
GP-Surface differed significantly from MT-Surface and 
MT-iPad (all p < .007). And finally, GP-iPad also differed 
significantly from MT-far, MT-Surface, and MT-iPad (all p 
< .039). It is noteworthy, however, that both GP and MT 
did not show any significant differences between their dif-
ferent calibrations, suggesting that the device on which they 
were calibrated on did not impact accuracy.  

Overall, GP-near had the lowest estimation error (M = 
2.77°, SD = 0.20°), followed by GP-far (M = 3.01°, SD = 
0.16°), GP-iPad (M = 3.24°, SD = 0.17°) and GP-Surface 
(M = 3.31°, SD = 0.16°) across all Screens. For all MT 
variations, the estimated gaze errors were larger than 4 
degrees. Figure 7 summarizes theses results. 

As for the main effect for Screen, post-hoc multiple means 
comparisons revealed that Wall was significantly different 
from the other two Screens (all p < .001). However, there 
was no significant difference between Surface and iPad. 
Overall, targets on the Wall had the least estimation error 
(M = 2.07°, SD = 0.07°), followed by Surface (M = 4.52°, 
SD = 0.22°) and iPad (M = 5.12°, SD = 0.23°). 

 
Upon inspecting Figure 7, one can see that the source of the 
Mode × Screen interaction is the increased difference be-
tween MT and GP (all calibration modes) between the Wall 
and Surface/iPad, with the Wall resulting in much lower 
estimation errors than the other two. It is noteworthy, that 
MT-near performs similarly to all GP modes on the Sur-
face, but its estimation error increases drastically on the 
iPad, although all GP modes remain at their level. We sub-
sequently ran separate ANOVAs on Modes for each Screen, 
and found several significant effects. On the Wall, only MT-
iPad and GP-near differed significantly (p < .008) indicat-
ing that nearly all modes performed similarly.  

On the Surface, the differences become more prominent, 
with GP-near and GP-far outperforming all MT modes 

except MT-near (all p < .016). Furthermore, GP-Surface 
and GP-iPad differed significantly from MT-iPad (all p < 
.012). We found the most differences on the iPad, where all 
GP modes are significantly less error-prone than all MT 
modes (all p < 0.03). Here we again did not find any differ-
ences within GP and MT for different calibration modes. 
Figure 8 visualizes the mean gaze estimation errors for each 
of the three screens and its nine targets for the two modes 
MT and GP. 

 
DISCUSSION & LIMITATIONS 
Our results show that – on a single display – GazeProjector 
achieves an average gaze estimation accuracy of 1.78° 
compared to 2.64° for MT, and 2.65° for HO. When used on 
multiple displays (and only being calibrated on a single 
screen), GazeProjector achieves an average gaze estimation 
accuracy of 2.47° compared to 3.60° for MT over all modes 
and target screens. Although this accuracy is slightly lower 
than the 0.5°–1° reported for the PUPIL eye tracking glass-
es under ideal conditions (i.e., in a stationary desktop set-
ting with a 27” screen and optimal lighting conditions [14]), 
we achieve this accuracy in a fully unconstrained, pervasive 
interaction setting.  

Pervasive Settings 
The first advantage of GazeProjector is its suitability for 
pervasive gaze interaction settings [6]. Current approaches 
that allow for gaze interaction on multiple displays using 
monocular mobile eye trackers require heavyweight exter-
nal motion capturing systems or visual markers. While 
motion capture systems allow for high-precision tracking, 
they are (1) costly and (2) cannot easily be installed in pub-
lic environments. Markers reduce this, but have another 
drawback: all displays have to be augmented with them – 
either with printed ones attached to a display’s frame [30, 
5], or digital ones shown on the display. However, printed 
markers quickly clutter the environment, in particular in 
settings with a large number of displays. While digital 
markers could only be shown on demand, they still take 
away display space and “compete” with the main content.  

While binocular systems can automatically compensate for 
vergence error, estimating gaze in display coordinates still 
requires to track changes in the user’s position and orienta-

 
Figure 7. Mean gaze estimation error for every target 
screen for MT-near, MT-far, MT-surface, HO-ipad, 

GP-near, GP-far, GP-surface and GP-ipad. 

 
Figure 8. Visualization of the mean gaze error (ellipses) for all 

different modes, MT and GP, and all calibrations averaged 
over all targets over all screens. Additionally the mean gaze 

estimations are visualized by black circles. 

 



tion relative to these displays. This severely limits the use 
of these devices to instrumented environments. GazePro-
jector, however, allows users to interact from arbitrary 
locations and orientations relative to multiple displays 
without this need – and, as our experimental results show, 
GazeProjector does so without lowering accuracy. Thus, 
our approach allows for unconstrained and seamless gaze 
interaction with multiple displays while on the move. 

Display Visibility 
Display tracking using visual markers requires the whole 
target display to be visible in the eye tracker scene camera’s 
field of view during calibration and interaction. In contrast 
GazeProjector relies on natural feature tracking and pro-
vides competitive gaze estimation accuracy even if only a 
fraction of the target display is visible. Naturally, the larger 
the visible portion of the display, the lower the tracking 
error. However, we found that a quarter of the display is 
usually sufficient, provided that enough features (e.g., high 
frequencies) are found in that portion. This allows Gaze-
Projector to work on much larger displays as well as with 
more extreme head movements than current eye trackers. 

Multi-Display Interactions 
Our results show that GazeProjector provides robust gaze 
estimation accuracy for different displays of different sizes 
without a need for recalibrating the eye tracker to each of 
the displays. Instead, the eye tracker only needs to be cali-
brated once (on any display) and gaze estimates are then 
automatically mapped to the other displays during runtime. 
Applying our calibration method in the presented experi-
ments, we were still able to achieve an accuracy of 3.24° 
when the eye tracker had been calibrated on a 9.7” iPad Air 
screen. This is a significant advancement over state-of-the-
art gaze estimation approaches.  

Head Movement and Orientation 
We further found that head movements are more prevalent 
in gaze interaction with large displays compared to smaller 
displays (e.g., mobile devices). This finding is in line with 
controlled laboratory studies on human vision: humans 
employ head movements for gaze shifts with ocular orbital 
eccentricity exceeding 20° [25]. While head movements 
pose a significant challenge to current head-mounted eye 
trackers, GazeProjector proved to be robust to head move-
ments, which is an essential feature for using head-mounted 
eye tracking systems for large screens. 

Limitations 
Despite its numerous advantages over state-of-the-art eye-
tracking systems, GazeProjector also comes with some 
limitations: first, our current implementation requires con-
tinuous snapshots of the target displays to be transferred to 
a central server. Consequently, all displays need to be regis-
tered with such a server a priori. Furthermore, increasing 
the number of displays also increases the network load for 
transferring real-time updates of a display’s content. How-
ever, we believe that future network technologies may 
overcome this limitation.  

Second, GazeProjector’s gaze estimation accuracy depends 
on the quality of the image data. This concerns the scene 
camera: as these cameras usually come with a wide angle 
lens to cover as much as possible of a user’s field of view, a 
target display may be rather small within the image. As 
mentioned before, this may increase errors in the transfor-
mation matrix due to insufficient image features. This is, of 
course, a technical limitation, which can be overcome by 
using different lenses for scene cameras. 

Nevertheless, we believe that GazeProjector is a promising 
alternative that realizes continuous gaze-based interaction 
in pervasive settings and multi display environments. 

CONCLUSIONS & FUTURE WORK 
In this paper, we presented GazeProjector, an approach for 
accurate gaze estimation and seamless interaction with 
multiple large displays using head-mounted eye trackers. In 
contrast to existing systems, GazeProjector only requires a 
single calibration performed with an arbitrary display and is 
robust to the user’s location and orientation to the displays 
as well as head movements. Furthermore, GazeProjector 
works without external tracking equipment, such as motion 
capturing systems or markers attached to display. 

We conducted two experiments in which we compared 
GazeProjector to existing, well-established techniques 
(which require additional equipment), and found that our 
approach compares well to these techniques. When being 
used on multiple displays, the results are even more promis-
ing. Overall, our results underline the significant potential 
to finally bring gaze-based interaction into pervasive set-
tings that involve gaze interaction with multiple displays.  

We tested GazeProjector in a laboratory environment to 
gain first insights into its performance compared to existing 
techniques. However, we want to take our approach one 
step further. One obvious step is to take it to the real world 
and evaluate its performance on (1) ultra-large displays, 
such as media façades, and (2) do so with multiple users 
simultaneously. This will further add to the eye tracking 
community as it has virtually been impossible to test eye 
tracking systems in such large scales. 
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