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ABSTRACT
Eye contact is one of the most important non-verbal social cues and
fundamental to human interactions. However, detecting eye con-
tact without specialised eye tracking equipment poses significant
challenges, particularly for multiple people in real-world settings.
We present a novel method to robustly detect eye contact in natural
three- and four-person interactions using off-the-shelf ambient cam-
eras. Our method exploits that, during conversations, people tend
to look at the person who is currently speaking. Harnessing the cor-
relation between people’s gaze and speaking behaviour therefore
allows our method to automatically acquire training data during de-
ployment and adaptively train eye contact detectors for each target
user. We empirically evaluate the performance of our method on a
recent dataset of natural group interactions and demonstrate that it
achieves a relative improvement over the state-of-the-art method of
more than 60%, and also improves over a head pose based baseline.
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Figure 1: Our method exploits the correlation between gaze
and speaking behaviour naturally occurring during multi-
person interactions toweakly annotate images (top) that are,
in turn, used to train a robust eye contact detector (bottom).

1 INTRODUCTION
Eye contact is fundamental to human social interactions and, as
such, a key non-verbal behavioural cue [Kleinke 1986]. Eye contact
detection has consequently emerged as an important tool for better
understanding human social behaviour and cognition [Farroni et al.
2002]. Eye contact detection is typically understood as the task
of automatically detecting whether a person’s gaze is directed at
another person’s eyes or face [Chong et al. 2017a], an object of
interest [Shell et al. 2003; Smith et al. 2013, 2005] or both [Zhang
et al. 2017a]. Eye contact detection has numerous applications, for
example as a key component in attentive user interfaces [Smith
et al. 2005] or to analyse turn-taking, social roles, and engagement
during multi-person interactions [Oertel and Salvi 2013].

Despite recent advances in appearance-based gaze estimation
[Zhang et al. 2015, 2017b, 2018], eye contact detection using off-the-
shelf cameras, i.e. without special-purpose eye tracking equipment,
remains profoundly challenging. This is because eye contact detec-
tion not only requires accurate gaze estimation but also information
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on the 3D position and size of the eye contact target, which is typi-
cally unknown in real-world settings. Previous works on automatic
analysis of social interactions thus often fell back to using head
orientation as a proxy for gaze direction and, in turn, eye contact
[Beyan et al. 2017b; Gatica-Perez et al. 2005]. However, while head
orientation and gaze are correlated, this correlation is far from
perfect during multi-person interactions [Vrzakova et al. 2016].

Hence, more recent works focused on developing methods specif-
ically geared towards eye contact detection. Smith et al. used a classi-
fication approach to determine eye contact with a camera, but their
method required prior knowledge about the size and location of the
target [Smith et al. 2013]. Zhang et al. presented a method for eye
contact detection during dyadic (two-person) interactions [Zhang
et al. 2017a]. Their method achieved significant performance im-
provements but only worked for a single eye contact target that
had to be closest to the camera. This assumption does not hold for
multi-person interactions in which multiple conversation partners
need to be differentiated.

To address both limitations, inspired by [Siegfried et al. 2017],
we present a novel method to robustly detect eye contact in natu-
ral three- and four-person interactions using off-the-shelf ambient
cameras. Our method exploits the fact that, during conversations,
people tend to look at the person who is currently speaking [Verte-
gaal et al. 2001]. Analysing the correlation between people’s gaze
and speaking behaviour therefore allows our method to automati-
cally acquire training data during deployment and adaptively train
eye contact detectors for each target user. More specifically, our
method first detects speaking behaviour of people based on their
mouth movements extracted from several ambient cameras. The
speaking behaviour is then associated with gaze estimates obtained
using a state-of-the-art convolutional neural network (CNN) gaze
estimator [Zhang et al. 2017b] applied on a frontal view on the
person whose eye contact with others is to be estimated. Finally,
our method weakly labels images to train an eye contact detector
on the corresponding CNN face feature representations.

The specific contributions of our work are two-fold. First, we
propose the first method for eye contact detection in natural multi-
person interactions using RGB cameras. Second, we demonstrate
the effectiveness of our method through a detailed performance
evaluation on a recent dataset of natural multi-person interac-
tions [Müller et al. 2018], showing that our method outperforms the
state-of-the-art method [Zhang et al. 2017a] with more than 60%
relative improvement. We further show that our method benefits
from ground truth speaking information, and can outperform the
state-of-the-art method trained on the whole 20-minute-long inter-
actions after only observing the first four minutes of an interaction.

2 RELATEDWORK
Our method is related to previous works on 1) exploring the link
between gaze and speech, 2) estimating gaze during social interac-
tions, and 3) computational methods for eye contact detection.

2.1 Link between Gaze and Speech
Research on the link between gaze and speech has a long history.
Studies have indicated that gaze can be a cue for turn-taking [Kendon

1967], as well as a collaborative signal to coordinate the inser-
tion of responses [Bavelas et al. 2002]. Recent research confirmed
these findings by employing head-mounted eye trackers and cross-
correlation analysis to show that speakers tend to end their turns
gazing at their interlocutor, while listeners begin speaking with
averted gaze [Ho et al. 2015]. Moreover, Hirvenkari et al. found
that even uninvolved observers of dyadic interactions followed the
interactants’ speaking turns with their gaze [Hirvenkari et al. 2013].

Although the roles in multi-person interactions can be more
complex than those of dyadic interactions, a strong link between
gaze and speech remains. Similar to the dyadic case, research has
shown that gaze is an important signal in turn-taking [Ishii et al.
2016; Jokinen et al. 2013]. Most importantly, however, Vertegaal
et al. reported a very high chance (88%) that a person looks at the
speaker in four-party conversations [Vertegaal et al. 2001]. All of
these findings underline the strong link between gaze and speech
and, as such, lay the foundation for our method and the idea of
using speech to weakly annotate gaze in an automatic fashion.

2.2 Gaze Estimation During Social Interactions
Gaze estimation has been of great interest for researchers in psy-
chology [Bavelas et al. 2002; Kendon 1967] as well as affective
computing [Andrist et al. 2014; Huang et al. 2016; Picard 1995]. Pre-
vious studies followed two different ways to address the challenges
of gaze estimation. Most of them relied on stationary [Jokinen et al.
2013; Vertegaal et al. 2001] or head-mounted [Ho et al. 2015] eye
trackers. However, the need for special-purpose equipment repre-
sents a significant constraint on the recording setup and can result
in unnatural behaviour by participants [Risko and Kingstone 2011].

A second line of work consequently focused on estimating gaze
during social interactions using off-the-shelf cameras. Most meth-
ods approximated gaze by head pose, for instance, to implement
plausible gaze aversion mechanisms on robots [Andrist et al. 2014],
track the attentional focus of meeting participants [Stiefelhagen
2002], or to detect a group’s interest level [Gatica-Perez et al. 2005].
Most recently, Beyan et al. estimated the visual focus of attention
among multiple persons based on head pose in order to detect
emergent leaders [Beyan et al. 2016a, 2017a] and predict leadership
styles [Beyan et al. 2017b]. Müller et al. used head orientation to
detect low rapport in small group interactions [Müller et al. 2018].
While all of these works assumed that head pose can serve as a good
proxy for gaze in diverse social interaction tasks, recent research
showed that several characteristics of gaze and head orientation
are not well correlated in group interactions [Vrzakova et al. 2016].

2.3 Eye Contact Detection
Unlike the general gaze estimation task that attempts to estimate the
precise gaze direction in a continuous space [Zhang et al. 2018], eye
contact detection is concerned with a binary decision on whether
gaze falls onto a target (e.g. a face or a screen) or not. A number
of studies have approached this task by either relying on a head-
mounted [Chong et al. 2017b; Smith et al. 2005; Ye et al. 2015]
or glasses-mounted device [Selker et al. 2001], or requiring LEDs
attached to the target [Shell et al. 2004, 2003; Smith et al. 2005].
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Figure 2: Camera setup used for the dataset recording
in [Müller et al. 2018]. Please note that the cameras were
placed slightly above the participants to avoid occlusions.

More recent works focused on the significantly more challenging
task of using off-the-shelf cameras for eye contact detection [Re-
casens et al. 2015; Smith et al. 2013]. To overcome limitations of
cumbersome and time-consuming data annotation, and to allow
for arbitrary geometric relationships between camera and target,
Zhang et al. recently proposed an unsupervised method for eye con-
tact detection [Zhang et al. 2017a] built on top of a learning-based
gaze estimation method [Zhang et al. 2017b]. A key assumption,
and limitation, of their method is that it assumes the gaze target to
be the closest to the camera. While this assumption held in the in-
vestigated settings, it does not in many other real-world situations,
in particular multi-person interactions. Siegfried et al. proposed a
method to detect eye contact in dyadic interactions [Siegfried et al.
2017]. However, their method required calibrated depth cameras, a
microphone array to detect the beginning and end of utterances of
each person, and knowledge of each person’s position.

2.4 Summary
Previous works on eye contact detection either required specialised
equipment or were limited to dyadic interactions. In contrast, we
present the first method for eye contact detection during natural
multi-person interactions that requires only an uncalibrated setup
of off-the-shelf cameras placed in the environment. We further
show that speaking behaviour inferred from mouth movements can
be leveraged to weakly annotate gaze estimates in such a setting.

3 DATASET
All experimental evaluations were performed on a subset of a recent
dataset of three- and four-person interactions [Müller et al. 2018].
We choose this dataset because, unlike others [Beyan et al. 2016b;
Oertel and Salvi 2013], it features two cameras behind each par-
ticipant providing a view on every other participant. This camera
placement makes it particularly well-suited for applying the eye
contact detection method by Zhang et al. [Zhang et al. 2017a], as
their method requires the target participant to be the closest to
the camera. In the following, we first provide an overview of the
dataset and then describe the additional eye contact annotations
that we collected for the purposes of the current work.
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Figure 3: Left: Probability of looking to the most often, sec-
ondmost often, and least often looked-at person, alongwith
looking at no face.Right: Probability of eye contact with the
person who is currently speaking in comparison to the sec-
ond and third most often looked-at person, along with look-
ing at no face.

3.1 Recording Setup
The dataset [Müller et al. 2018] had originally been recorded to
study rapport during multi-person interactions. It consists of 78 par-
ticipants studying at a German university (43 female, aged between
18 and 38 years), split into 12 four-person and 10 three-person inter-
actions. Participants in each group were instructed to choose and
discuss the most controversial topic from a list of possible topics.

The recording was performed in a quiet office room equipped
with a 4DV camera system consisting of eight frame-synchronised
cameras. As shown in Figure 2, two cameras were placed behind
each participant at a slightly elevated position above the head, pro-
viding a near frontal view of the faces of all participants even if they
turned their head during the conversation. After each recording
session, participants provided ratings for felt rapport with the inter-
actants, perceived leadership, dominance, competence and liking,
and a five-factor personality assessment (not used here). Further-
more, the authors provided speaking activity annotations for the
whole dataset, indicating who was speaking at each moment.

3.2 Gaze Annotations
Given that the dataset by [Müller et al. 2018] did not contain any
annotations of participants’ gaze behaviour, we asked three annota-
tors to label a subset of 14 recordings with eye contact ground-truth,
five of which we used as a dataset for developing our method ("de-
velopment set"), and nine of which we used for testing ("test set").
This subset was chosen randomly after excluding recordings which
suffered from data loss in one camera, as comparing to the method
of [Zhang et al. 2017a] on these recordings would have given an
unfair advantage to our method. Each of the annotators labelled
a different part of the data while being supervised by the lead au-
thor to ensure a constant quality of annotations. The annotations
consisted of the identifier of the participant whose face is being
looked at at a particular moment. Specifically, similar to Zhang
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et al. [2017a], we defined eye contact as gaze landing within the
face region. We also asked them to annotate an additional class
containing all non-eye-contact cases, such as looking at the body,
walls, or floor, or when participants closed their eyes. Annotations
were performed on a per-frame basis at 15-second intervals to strike
a balance between annotation effort and coverage. This resulted
in eye contact annotations for 3,995 frames from 50 participants,
spanning more than 16.5 hours of video recordings.

The annotations revealed that eye contact occurred pervasively
during interactions. In Figure 3, we show statistics of eye contact
in four-person interactions. The basic pattern is the same in three-
person interactions. Although on average one person receives a
very large part of the overall eye contact (see Figure 3, left), other
people receive significant amounts as well. However, conditioning
on the currently speaking person reveals that the current speaker
is by far the most likely eye contact target (see Figure 3, right). This
pattern lays the foundation for our method.

4 METHOD
Our method improves over the weak labelling and subsequent
training of the eye contact detection method proposed in [Zhang
et al. 2017a]. Thus, we first briefly summarise that method before
we discuss the improvements introduced in our work. Throughout
the discussion, we refer to the person whose gaze we analyse as
gazer, and the person whom the gazer looks at as gaze target person.

4.1 Eye Contact Detection Framework
Here we briefly introduce the unsupervised eye contact pipeline
in [Zhang et al. 2017a]. Their method took camera images as input
and applied facial landmark detection [Baltrušaitis et al. 2016] to
extract six key points, including eye and mouth corners. These key
points were used to estimate the 3D head pose by fitting them to a
generic 3D face model. Then the face images were cropped accord-
ing to the head pose and data normalisation discussed in [Zhang
et al. 2018]. Subsequently, a user-independent CNN model [Zhang
et al. 2017b] estimated gaze points in the camera plane, whose ori-
gin represents the camera location. All samples of gaze estimates
extracted over a time period were clustered by the density-based
OPTICS clustering algorithm [Ankerst et al. 1999]. By assuming
that the target object is the closest salient object to the camera, samples
within the cluster closest to the origin were labelled as "eye contact"
and the rest as "no eye contact". Afterwards, a binary support vector
machine classifier was trained on these annotations with the 4096-
dimensional face features extracted from the first fully-connected
layer of the CNN model. Compared with the two-dimensional gaze
location, this CNN feature representation contains richer informa-
tion and thus a higher potential of achieving better performance.

Despite the success of this method in unsupervised eye contact
detection, the underlying assumption of the gaze target object being
the salient object closest to the camera constrains its extension to
the multi-person interaction scenario. This is because eye contact
with the target person can only be detected on a camera positioned
closely to the target person, which restricts the placement of cam-
eras to locations that might not have an optimal view on the gazer.
To address this challenge, we propose a novel annotation mecha-
nism that exploits the gaze and speaking behaviour to allow for eye

contact detection with multiple target persons from a single frontal
view on the gazer.

4.2 Weak Labelling Using Speaking Behaviour
In contrast to the binary classification problem considered in [Zhang
et al. 2017a], we have to address a multi-class classification problem,
for which we propose a new automatic annotation method. Similar
to the work of [Siegfried et al. 2017], we leverage social conventions
to performweak labelling of gaze estimates.Whereas [Siegfried et al.
2017] used speech-based weak labels only to correct for constant
shifts in gaze estimates, our approach accommodates nonlinear
transformations in the gaze estimate space and provides automatic
annotations for the subsequent training of an eye contact detec-
tor. We make two assumptions about gaze and speaking behaviour
during social interactions:
(1) People tend to look at the speaker during the interaction.
(2) Probability of eye contact with a target person is higher if (s)he

speaks more often.

These assumptions allow our method to 1) locate the face centres
and 2) determine the face boundary in the space of gaze estimates.

Figure 4 shows an overview of our method. Our method takes the
video stream of a multi-person interaction as input. From a frontal
view on the gazer, it extracts gaze estimates using a state-of-the-art
CNN-based gaze estimation model [Zhang et al. 2017b]. From the
gaze estimates obtained from the whole interaction, we compute the
gaze probability distribution. Afterward, we identify the speaking
behaviour of different individuals in the interaction based on their
mouth movements and associate them with the corresponding gaze
estimates across time. We further estimate the gaze probability
distributions given a specific gaze target person is speaking. Given
this information, we can locate the faces of the gaze targets in the
gaze estimate space by comparing the conditional distributions with
the general gaze distribution. Our approach subsequently grows
regions around the gaze target locations and marks samples falling
into those regions as "eye contact with person j". Samples not falling
into any gaze target region are labelled as "no eye contact". Finally,
we use these annotated samples to train an eye contact detector
based on the high-dimensional CNN-features as in [Zhang et al.
2017a]. In the following, we discuss each step in detail.

4.2.1 Estimating Distributions of Raw Gaze Estimates. We apply
Gaussian Kernel Density Estimation (KDE) to approximate proba-
bility density functions of gaze estimates. KDE replaces each sample
with a Gaussian distribution, aggregates them, and then outputs
the normalised result as a density function. As we use Scott’s Rule
to estimate the kernel bandwidth [Scott 2015], KDE is completely
parameter free. By applying KDE to the 2D gaze estimates of dif-
ferent participants, we derive a gaze density estimate дi for every
gazer i , as well as the conditional gaze density estimate дi |j for
gazer i given the potential gaze target person j is speaking.

4.2.2 Locating Face Centres from Gaze Density Estimates. While
participants in general are likely to look at the current speaker,
there could be a personal gaze bias due to individual preferences or
external distractions. For example, one participant might frequently
look to the floor, while another might often look at a particular
person. Such personal gaze bias to some object or person should
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Figure 4: Our method takes images from multiple ambient cameras pointing at the gazer and potential gaze target persons as
input. The images are the basis for coarse gaze estimates obtained using a full-face gaze estimationmethod [Zhang et al. 2017b].
Kernel density estimation (KDE) yields the distribution of gaze estimates. This distribution is contrasted with distributions
of gaze estimates for which a fixed gaze target person is speaking. The resulting difference distributions are used to extract
locations of the gaze target persons’ heads in the space of gaze estimates and to grow corresponding labelled regions around
them. Using these labels an eye contact detector based on CNN face features is trained that is able to classify new input images.

be relatively irrespective of who is speaking and be encoded both
in the general gaze estimate density дi and the conditional gaze
density estimate дi |j . To compensate for this bias in analysing gazer
i while participant j is speaking, we compute the difference map
between the conditional density estimate and the general gaze
density estimate, i.e. di j = дi |j − дi .

To locate the face centre of participant j in the gaze estimate
space of gazer i , we exploit our first assumption that people in
general tend to look at the speaker in the interaction. As a result,
we retrieve the location with maximum value in the difference map,
i.e. li j = argmaxdi j , where li j is the face location of participant j
in the gaze estimate space of gazer i .

4.2.3 Labelling Frames for Eye Contact Detection. After locating
the face centre location li j , we annotate samples in its vicinity with
the participant id j. These samples cover the area corresponding
to the face region of the target person in the gaze estimate space.
Specifically, starting from a location li j , we grow a gaze target region
by following the level sets of дi . This region is grown subject to
two conditions. First, we grow the region until a probability mass
threshold taccept is covered in дi . Second, we constrain the region
to not grow into areas with negative values in di j , so as to ensure
the samples we annotate only correspond to gaze locations where
the gazer is more likely to look if j is speaking.

The probability mass threshold should ideally be determined
by the probability p(eci j ) that gazer i has eye contact with target
person j. Although there is a high chance that the gazer looks
at the speaker, to estimate p(eci j ) we also need to consider the
situation when the gazer is speaking. Therefore, we use the second

assumption that the probability of eye contact with a target person
is higher if s/he speaks more often. Based on this assumption, we
estimate p(eci j ) by multiplying the probability of target person j
speaking with the probability of the occurrence of eye contact (as
opposite to looking at the body of a person or a non-person object,
etc.), p(ec), across all participants:

p̂(ei j ) = p(speakj )p(ec) (1)

We use this estimate p̂(ei j ) as our probability mass threshold taccept
in weak eye contact labelling. We estimate p(ec) only from the
recordings in the development set. Given that our method does not
use ground truth speaking annotations or audio information, we
cannot calculate p(speakj ) directly. Thus, we heuristically set it to
1
n , where n denotes the number of interactants. Unlike [Zhang et al.
2017a], our method does not rely on an unlabelled "safe margin"
to exclude ambiguous samples between "eye contact" and "no eye
contact" from training. Instead, we obtained a higher performance
byweakly annotating every sample and using a strongly regularised
classifier to learn the eye contact model. This is probably because
our heuristic results in a sufficiently precise guess as to the extent
of “eye contact” regions in gaze estimate space.

4.3 Extracting Speaking Behaviour
To achieve a fully automatic system, we develop a visual speaking
indicator based on the sum of the standard deviations of facial action
units 25 (lips part) and 26 (jaw drop). We choose to extract this
quantity in four-second time intervals around each frame, as this
time window maximised the correlation of the speaking indicator
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with ground truth speaking activity on the development set. To
obtain robust estimates of facial action units, we obtain predictions
from OpenFace [Baltrušaitis et al. 2016] on all available views on a
given person and select the best view for each frame according to the
provided confidence scores. As this visual speaking indicator suffers
from noise caused by different facial expressions related to action
units 25 and 26, we do not precisely know the amount of speaking
for each participant. To address this, we use a heuristic threshold
to detect speaking behaviours by assuming all participants speak
equally often. Specifically, we extract the 1 − 1

n percentile of the
values of the visual speaking indicator of each person, wheren is the
number of participants (3 or 4) in the recording. Frames above this
threshold are classified as "speaking", those below as "not speaking".

4.4 Training the Eye Contact Detector
Our eye contact detector relies on the feature representation ex-
tracted from the second last layer of the gaze CNN model [Zhang
et al. 2017b]. To make our approach more easily comparable to that
of [Zhang et al. 2017a], we also chose to train a support vector
classifier (SVC) on this representation. Specifically, we train a one-
versus-one multi-class SVC with a radial basis function kernel on
the annotated samples, which include classes of gaze on different
persons’ faces as well as "no eye contact". We use the default value
for γ (1 / number of features), and construct a balanced training set
by subsampling classes that are overrepresented. On the develop-
ment set we observed that strong regularisation is important. We
therefore set the misclassification penalty parameter C to 0.01 for
training our eye contact SVCs.

5 EVALUATION
We compared the performance of our method against the state of
the art and investigated its robustness to the quality of speaking
behaviour (human-annotated vs. auto-detected). We then examined
early predictions, evaluating a progressively increasing amount of
training data, followed by the impact of the eye contact prior, p̂(ec)
as well as a underlying cause of performance limitation.

5.1 Eye Contact Detection Performance
We compared our method (ours) against the following baselines:

(1) Unsupervised eye contact detection [Zhang et al. 2017a]: This
is the state-of-the-art eye contact detection method. As this
approach assumes that the potential target object is the closest
to the camera, we ran it on each camera separately to detect
eye contact with the person next to the camera. We used the
development set to find the optimal C parameter for the SVC.

(2) Head pose as a proxy to gaze (ours - head pose): This is an alter-
native method that replaces the annotation by gaze estimates
with head orientation in our pipeline. This baseline method is
motivated by studies that used head orientation as a proxy for
gaze direction [Beyan et al. 2017b; Gatica-Perez et al. 2005].

(3) Detection without training (ours - no train): This method re-
places the eye contact detection model (i.e. SVC) training in our
pipeline with a component that predicts eye contact directly by
the labelling region in which the raw gaze estimates fall.
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Figure 5: Accuracy of the different eye contact detection
methods. Error bars indicate 95% confidence intervals. Ran-
dom chance level is indicated with the black dashed line.

(4) Labelling with ground truth speaking behaviour (ours - GT
speech): This method replaces the vision-based speaking be-
haviour extraction with manual speaking annotation. It thus
represents an upper performance bound and, as such, simulates
the case when close-to-ground-truth speaking detection is avail-
able via specialised audio recording equipment. This method
does not need camera views on potential gaze targets.

(5) Random baseline: Eye contact detection using random guessing.
For a given participant, this can either be 1

4 (for four-person-
interaction), or 1

3 (three-person-interaction).
Except for the baselines (1) and (5), the above methods replace
different major components in our pipeline, thus shedding light
on the contribution of each component to overall performance.
Please note that hyper-parameter tuning was done solely on our
five-recording development set; final performance numbers were
computed at the very end on our nine-recording evaluation set.

Figure 5 shows the performance comparison, with confidence
intervals based on the Student’s t-distribution indicating the range
in which the mean accuracy of the population of subjects will fall
with a chance of 95%. The overall results are very encouraging. Our
method (0.63) can outperform the no-training counterpart (0.54),
and more interestingly, considerably outperform the head pose
counterpart (0.51) as well as the state of the art [Zhang et al. 2017a]
(0.39) and random guessing (0.29). Furthermore, our method is close
to the performance with ground truth speech information (0.69).

The large performance drop (12% absolute decrease) when replac-
ing gaze with head pose estimates is in line with a previous study
questioning the reliability of the head as a proxy for gaze in multi-
person interactions [Vrzakova et al. 2016]. Moreover, removing the
eye contact classifier training in our pipeline also caused a clear
decrease in accuracy (9% absolute decrease), indicating that the
SVC can effectively leverage the information encoded in the high-
dimensional CNN feature space. The moderate gap (6% absolute de-
crease) between our method and the alternative with ground truth
speaking annotation indicates that our fully-automatic method for
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Figure 6: Accuracy of selected methods when only using
the first x minutes of an interaction for training. The black
dashed line indicates performance of a random predictor.

vision-based speaking detection is quite accurate. Although this
vision-based method suffers a slight drop in performance, it enables
more flexibility in the recording setup, as the specialised equipment
necessary for close-to-ground-truth speaking detection (e.g. lapel
microphones or a microphone array) is not always available.

5.2 Online Prediction
As some applications may require eye contact detections at early
stages of an interaction, we evaluated the performance of our
method for an increasing amount of training data. Figure 6 shows
the accuracy of our method (in red) and our upper bound (in blue).
As expected, accuracy increases for both methods as the amount of
training data increases. More importantly, we see that after training
for 12.5 minutes our method performs close (0.60 accuracy) to that
of training on the full interactions (0.63 accuracy). It is interest-
ing to note that the performance gap between our method and
the upper bound is slightly larger in the range of two to five min-
utes of training. Furthermore, after three minutes the upper bound
already achieves the performance of the fully-automatic method
being trained on 12.5 minutes of an interaction. This speaks for spe-
cialised audio equipment providing close-to-ground-truth speaking
detection like lapel microphones or a microphone array in cases
where early prediction is desired. Apart from the online prediction
case, these results indicate that annotating speaking status can be
helpful if the duration of recordings is limited.

5.3 Influence of the Eye Contact Prior
In this section we evaluate the impact of the prior on the probability
of eye contact p(ec), which is used as a parameter for automatic
annotation in our method.

Figure 7 shows the performance of our method (in red), the
method using speaking ground truth (in blue), and the method
without training (in green), given different estimates of p(ec) be-
tween 0.25 and 1.0. Probably due to the strongly regularised SVC,
p(ec) does not have a significant influence on the training-based
methods. Regularisation allows the SVC to leverage the facial ap-
pearance information and better tolerate the potential erroneous

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p(ec)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

ours - GT speech

ours

ours - no train

Figure 7: Accuracy of selectedmethods depending on the eye
contact prior p(ec).
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Figure 8: Accuracy of selectedmethods depending on the eye
contact priorp(ec) for ground truth “eye contact” (solid lines)
and “no eye contact” samples (dotted lines).

labelling caused by the nonoptimal p(ec) during learning. However,
in the no-training method, p(ec) does have a clear influence on per-
formance, since it directly determines the area of each face region
and thus the likelihood of eye contact. Specifically, the accuracy of
the no-training method grows with the increase of p(ec).

Figure 8 separates the performance of these three methods for
ground truth "eye contact" and "no eye contact" samples. Although
the overall accuracies of the learning based methods are robust
to p(ec), the individual accuracies for "eye contact" and "no eye
contact" behave differently. In general, a larger p(ec) increases the
accuracy for "eye contact", while it decreases the accuracy for "no
eye contact". Thusp(ec) trades off accuracy on "eye contact" samples
against the accuracy on "no eye contact" samples. This can be useful
if a high accuracy for ground truth "no eye contact" is desired, such
as for studies about gaze aversion or autistic behaviours.
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Figure 9: Accuracy of our method as well as the head pose
proxy for participants with and without glasses. Error bars
indicate 95% confidence intervals. Performance of a random
predictor is indicated by the black dashed line.

5.4 Performance With and Without Glasses
Given that eyes can be partially occluded by glasses, we anal-
ysed how wearing glasses affected our performance in contrast
to the method relying on head orientation and the state-of-the-art
method [Zhang et al. 2017a] (see Figure 9). We see that our method
reaches an accuracy of almost 0.7 for the no-glasses cases, while
it yields only 0.52 for the glasses cases, which is not significantly
better than relying on head pose (0.49). The lower accuracy is a
direct consequence of the low performance of the underlying gaze
estimation method for these cases [Zhang et al. 2017b]. However,
our method clearly outperforms the state-of-the-art method no
matter if people are wearing glasses or not (0.69 vs. 0.37 and 0.52 vs.
0.42, respectively). It is surprising that the state-of-the-art method
reaches a higher accuracy for people wearing glasses than for peo-
ple without glasses. However, as the confidence intervals for these
cases are largely overlapping, this might be a result of chance.

6 DISCUSSION
In this work we proposed a novel method for eye contact detec-
tion during multi-person interactions which exploits speaking be-
haviour as weak supervision to train the eye contact detector. Our
method addresses two key limitations of state-of-the-art methods
for eye contact detection [Zhang et al. 2017a]: First, it allows de-
tection of eye contact for an arbitrary number of targets. This is
important for the meeting scenario studied here, but even more so
considering future application scenarios with a larger number of
users, such as in a classroom. Second, these targets can be positioned
at arbitrary distances from the camera. This is equally important
as it significantly reduces constraints on the recording setup, al-
lowing for further studies on optimal camera placements and more
seamless integration of the setup into natural environments.

Through evaluations on a recentmulti-person dataset, we showed
that our method significantly improves over the current state of

the art in eye contact detection (see Figure 5). This is encourag-
ing for automatic analysis of group behaviour, for which previous
works often had to fall back to using only weakly correlated head
orientations as a proxy for gaze and eye contact [Beyan et al. 2017b;
Vrzakova et al. 2016]. As a consequence, our approach may lead
to new insights into non-verbal group behaviour and to improved
prediction performance on diverse social signal processing tasks,
such as leadership, interest level, and low rapport detection [Beyan
et al. 2017b; Gatica-Perez et al. 2005; Müller et al. 2018].

While post-hoc analysis of eye contact is sufficient for many
applications, real-time eye contact detection for multiple users
could, for example, be used for future systems that detect low rap-
port [Müller et al. 2018] and directly execute interventions, e.g. via
different kinds of displays [Balaam et al. 2011; Damian et al. 2015;
Schiavo et al. 2014]. As shown in our work, our method is capable of
online prediction after observing the interaction for a short amount
of time (see Figure 6). Using only four minutes of data, our method
can outperform the state of the art on eye contact detection being
trained on the whole 20-minute-long interactions.

Our evaluations also showed that our method can still benefit
from ground truth speaking annotations (see Figure 5). These results
are a simulation of a setup including lapel microphones (small
microphones e.g. attached to the collar) or microphone arrays, as
they can provide close-to-ground-truth speaking detection. If such
equipment is available, our method even does not require camera
views on the gaze target persons, but only a single view on the
person whose gaze we desire to estimate.

While these results are promising, some limitations remain that
we intend to address in future work. Our method currently assumes
people to be stationary. While this assumption holds for many sce-
narios, such as the group meetings we investigated, eye contact
detection of moving people is an important problem. An improved
version of our method could enable studying free-standing conver-
sational groups [Alameda-Pineda et al. 2016] or emotion recognition
in free-moving settings [Müller et al. 2015]. Another limitation of
our current method is that it can only detect eye contact to people,
as it relies on speaking information.

7 CONCLUSION
In this work we proposed a novel method to robustly detect eye
contact in natural multi-person interactions recorded using off-the-
shelf ambient cameras.We evaluated ourmethod on a recent dataset
of natural group interactions, which we annotated with eye contact
ground truth, and showed that it outperforms the state-of-the-art
in eye contact detection by a large margin. Given the prevalence of
cameras in private and public spaces, these results are promising
and point towards eye contact detection methods that allow for
unobtrusive analysis of social gaze in natural environments, thereby
paving the way for new applications in the social and behavioural
sciences, social signal processing, and intelligent user interfaces.
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