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ABSTRACT
We present the first method to anticipate averted gaze in natural
dyadic interactions. The task of anticipating averted gaze, i.e. that
a person will not make eye contact in the near future, remains un-
solved despite its importance for human social encounters as well
as a number of applications, including human-robot interaction or
conversational agents. Our multimodal method is based on a long
short-termmemory (LSTM) network that analyses non-verbal facial
cues and speaking behaviour. We empirically evaluate our method
for different future time horizons on a novel dataset of 121 YouTube
videos of dyadic video conferences (74 hours in total). We inves-
tigate person-specific and person-independent performance and
demonstrate that our method clearly outperforms baselines in both
settings. As such, our work sheds light on the tight interplay be-
tween eye contact and other non-verbal signals and underlines the
potential of computational modelling and anticipation of averted
gaze for interactive applications.
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1 INTRODUCTION
Gaze is a central non-verbal cue in social interactions, being con-
nected to many fundamental aspects in conversations, including
turn-taking [Kendon 1967], perception of affective state [Adams Jr
and Kleck 2003], attraction [Kellerman et al. 1989] and leader-
ship [Capozzi et al. 2019; Müller and Bulling 2019]. One partic-
ularly important aspect of gaze in conversations is the presence of
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Figure 1: We study the challenging task of averted gaze an-
ticipation in conversations: Given past observation of a per-
son’s gaze, head pose, facial expressions and speaking be-
haviour, we predict averted gaze in the near future.

averted gaze, which has been shown to be connected to cognitive
load [Glenberg et al. 1998], intimacy-modulation [Abele 1986] and
floor management [Kendon 1967].

Recent advances in gaze estimation and eye contact detection
make it possible to automatically detect averted gaze, providing
valuable input to a number of potential applications in human-
robot interaction and assistive systems [Müller et al. 2018; Zhang
et al. 2017b]. While these current methods focus on predicting gaze
behaviour in the present, the ability to anticipate future states of
gaze in conversations is essential to enable systems to proactively
manage user attention. For example, if a robot detects that its in-
terlocutors’ gaze is going to be averted when it is about to initiate
an important action, it can either catch the users attention by an
expressive gesture, or delay the onset of the action in order to be
less obtrusive. Furthermore, new possibilities for assisting human-
human interactions open up by the ability to forecast eye contact.
For example proactive feedback could help people having difficulty
to maintain socially accepted eye contact behaviour (e.g. people
with autism spectrum disorder [Senju and Johnson 2009]).

While first works explored anticipation of visual behaviour in
egocentric video [Zhang et al. 2017c] and mobile device interac-
tions [Steil et al. 2018], gaze anticipation in human-human interac-
tions remains completely unexplored. We fill this gap by proposing
the first method to anticipate averted gaze in natural dyadic conver-
sations, i.e. to predict whether gaze will be averted in the near future
(see Figure 1 for an illustration of the prediction task). Our method
consists of a long short-term memory (LSTM) network [Hochreiter
and Schmidhuber 1997] which takes as input a slice of prior con-
versation and outputs whether the interactants’ gaze will be mostly
averted or not during a subsequent future time interval. We exploit
the dependence of subsequent states of eye contact on previous
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eye contact, gaze, head pose, and facial expressions as well as the
well-known link between speaking and eye contact [Kendon 1967].

The specific contributions of our work are two-fold. First, we
propose the first method to forecast eye contact in dyadic conver-
sations based on the observation of preceding visual and speak-
ing behaviour. Second, we evaluate our method on a newly col-
lected dataset of natural interactions over video conferencing, an-
notated with eye contact information on 23,131 frames. We show
consistent improvements of our method over several baselines.
The dataset is publicly available at https://www.perceptualui.org/
datasets/DEyeAdicContact and we hope it can become a valuable
resource for research on eye contact detection and anticipation.

2 RELATEDWORK
Our work is related to previous research on 1) the importance of
gaze in social conversations, 2) computational methods for learning-
based gaze estimation and eye contact detection, as well as 3) meth-
ods for gaze behaviour prediction and anticipation.

2.1 Gaze in Social Conversations
A large body of work has demonstrated the fundamental impor-
tance of gaze in conversations. Early work showed that gaze is an
important cue in turn-taking [Kendon 1967; Rossano 2013] and
coordinates the insertion of responses [Bavelas et al. 2002]. More
recently, [Ho et al. 2015] found that while speakers likely gaze
at their interlocutor at the end of speaking turns, listeners begin
speaking with averted gaze. Furthermore, Glenberg et al. [1998]
found a connection between averted gaze and cognitive load by giv-
ing participants questions of varying difficulty. The results showed
that the frequency of averted gaze was higher with larger cognitive
load, and averted gaze also led to better task performance.

Social gaze has also been studied extensively together with
other social signals, such as facial expressions [Adams Jr and Kleck
2003; Ekman 1992; Zuckerman et al. 1981]. A key finding is that
coordinated gaze behaviour and facial cues can denote affective
states, such as avoidance-oriented emotions (e.g., fear and sadness)"
[Adams Jr and Kleck 2003]. Another line of work has explored the
intimate relationship between gaze and speech [Argyle and Cook
1976; Jokinen et al. 2010; Maglio et al. 2000; Streeck 1993]. For ex-
ample, the tone of prosodic features and gaze direction was shown
to denote emotional states (e.g if someone is angry they might
raise their voice and look in the direction of a target) [Hamilton
2016]. Jokinen et al. [2010] leveraged gaze information to better
predict turn taking, particularly the time windows for alignment in
conversational/naturalistic speech while Müller et al. [2018] com-
bined gaze and speech to improve eye contact detection in group
interactions. Finally, recent work combined features based on peo-
ples’ visual focus of attention with facial expressions or body pose
features to detect leadership [Beyan et al. 2017; Müller and Bulling
2019] or rapport [Müller et al. 2018] in group interactions.

2.2 Gaze Estimation and Eye Contact Detection
Analysing social gaze in conversations either requires specialised
mobile eye tracking equipment [Kassner et al. 2014; Tonsen et al.
2017] or computational methods for gaze estimation and eye contact
detection from off-the-shelf RGB cameras – the latter research area

in computer vision has received particular attention in recent years.
Gaze estimation methods can be roughly divided in model-based
and appearance-based [Hansen and Ji 2009]: While model-based
approaches use a geometric model of the human eye to perform
gaze estimation [Valenti et al. 2011; Wood et al. 2015; Yamazoe et al.
2008], appearance based methods directly regress the gaze from
the image input [Lu et al. 2012; Zhang et al. 2019]. In contrast to
gaze estimation, eye contact detection is the task of predicting a
binary label of whether gaze is on a specific target (person, object)
or not. While Smith et al. [2013] detected eye contact with the
camera an image was taken from, Zhang et al. [2017b] were the
first to propose a more general method that was able to detect
eye contact with a salient object close to the camera. This method
was subsequently generalised to discriminate multiple eye contact
targets during group interactions [Müller et al. 2018].

Ourwork is fundamentally different from these approaches given
that their aim is to detect eye contact only in the present moment
while we present the first method to anticipate future eye contact in
conversations, particularly averted gaze.

2.3 Gaze Behaviour Prediction and
Anticipation

While the previously discussed methods require an image of the tar-
get person to estimate gaze and predict eye contact, a parallel line of
research explores methods to predict gaze behaviour without such
information. One of the most common tasks is to predict saliency
maps, that is person-independent, two-dimensional heatmaps in-
dicating at which locations in an image people are most likely to
look [Harel et al. 2007; Itti et al. 1998; Kümmerer et al. 2016] or
user interface [Xu et al. 2016]. In contrast to saliency prediction,
scanpath prediction attempts to predict sequences of plausible fixa-
tions for a given image [Assens Reina et al. 2017; Liu et al. 2013].
Both tasks, however, assume a fixed input image as stimulus as well
as a free-viewing task, disregarding the effects of context and top-
down influences on gaze behaviour. Borji et al. [2013] introduced
such top-down effects by modelling gaze behaviour during driving
in a computer game. More recently, there has also been interest
in predicting gaze on egocentric videos – a task that requires the
system to integrate bottom-up as well as top-down factors across
time [Huang et al. 2018; Li et al. 2018; Zhang et al. 2018].

Only few previous works explored the even more challenging
task of anticipating future gaze behaviour. Zhang et al. predicted
future gaze in egocentric videos by generating future video frames
and predicting temporal saliency on these [Zhang et al. 2017c].
Conceptually most similar, albeit in a different setting and using
fundamentally different information, is recent work by Steil et al. on
attention forecasting [Steil et al. 2018]. There, the authors focused
on attention anticipation during everyday mobile interactions by
combining visual scene information from a head-mounted camera
with information on app usage and device-integrated mobile phone
sensors. They demonstrated that imminent shifts of attention to and
away from the phone, as well as the future primary attentional focus
could be robustly predicted in a wide variety of mobile settings.

To the best of our knowledge, our work is the first to study atten-
tion forecasting, particularly anticipating averted gaze behaviour,
in everyday conversations from multimodal social signals.

https://www.perceptualui.org/datasets/DEyeAdicContact
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Figure 2: Example images from the dataset with enlarged eye regions for better visibility. A: Images from the Youtube channel
“Wisdom From North”, B: Images from the Youtube channel "The Spa Dr." For each image, the host is shown on the left and
the guest on the right. C: Examples of head pose estimates, keypoint detections and gaze estimates obtained from OpenFace.
Image courtesy Jannecke Øinæs and Dr. Trevor Cates.

3 DATASET
To the best of our knowledge, currently no dataset of natural dyadic
interactions with fine-grained eye contact annotations exists. We
therefore created our own dataset using videos of dyadic interviews
published on YouTube. Especially compared to lab-based recordings,
these Youtube interviews allow us to analyse behaviour in a natural
situation. All interviews were conducted via video conferencing and
provide frontal views of interviewer and interviewee side-by-side.
Specifically, we downloaded videos from the YouTube channels
“Wisdom From North” and “The Spa Dr.” that both provide a large
number of interviews, often with a high video quality. Videos from
the channel “Wisdom From North” have already been utilised in
research on facial expression generation [Feng et al. 2017]. While
“Wisdom From North” is concerned with spiritual topics, “The Spa
Dr.” focuses on health and beauty. Each channel features a single
host interviewing different guests in each session. We manually
selected videos with high video quality, resulting in 60 videos for
“The Spa Dr.” and 61 videos for “Wisdom FromNorth”. All videos are
recorded at a frame rate between 24 and 30 fps and vary in length
from 17 minutes to 58 minutes (average: 37 minutes). In total the
videos contain 74 hours of conversations, amounting to 7,817,821
video frames. Figure 2 shows example images from both Youtube
channels. The natural and unconstrained behaviour of interactants
comes hand-in-hand with challenges for obtaining accurate eye
contact ground truth. In particular, the geometric relation between
interactant, camera and screen onwhich the interlocutor is visible in
the interactants’ view changes between videos. For example, while
both guests in the top two images in Figure 2 B have eye contact
with their interlocutors, different camera- and screen positions lead
to different gaze directions. In the following, we discuss how we
tackle this challenge by semi-automatic gaze annotation.

3.1 Gaze Annotation
We instructed five human annotators to classify the gaze of inter-
viewer and interviewee (in the following referred to as “subjects”).
Even though in this study we were only interested in a binary clas-
sification of averted gaze versus eye contact, a more fine-grained
distinction of averted gaze might prove beneficial for future re-
search. To this end we used in total 11 mutually exclusive classes

during annotation. Annotators were asked to select the class “eye
contact” if the subject was looking at the location of the other per-
son on her screen or the camera from which she was recorded. We
found that annotators were able to reliably determine the place-
ments of camera and screen by skimming through the video prior
to starting the annotation. If there was no eye contact, annotators
classified whether the subject gazed “up”,“down”, “left”, “right”, or
to the “upper left”, “lower left”, ”upper right” or “lower right”. In
the following, we refer to the union of these classes as the “no eye
contact class”. A separate class was dedicated to blinks, while yet
another class indicated instances in which annotators were unsure
about how to decide, e.g. as a result of low image quality. As an-
notators worked on disjoint sets of videos, one of the authors was
present throughout the first sessions in order to ensure consistency.

To strike a good balance between sufficient coverage and anno-
tation effort, we collected these annotations on a frame-by-frame
basis every 30 seconds for the Wisdom From North interviews, and
every 15 seconds for The Spa Dr. interviews. We collected annota-
tions for The Spa Dr. on a finer timescale given that the host of that
channel almost always keeps eye contact with her interviewees. A
coarser time scale would have increased the risk of missing the no
eye contact classes in the annotation. In total, we collected 23,131
annotated video frames of which 83% were labelled as "eye contact".

3.2 Semi-automatic Eye Contact Annotation
Annotating such a large dataset on a frame-by-frame basis com-
pletely manually is impractical. We therefore designed a semi-
automatic method to annotate every frame in the videos by combin-
ing the sparse human annotations with eye contact labels calculated
using gaze estimates from OpenFace [Baltrusaitis et al. 2018] (see
Figure 2 C for an illustration of OpenFace output).

3.2.1 Preprocessing of the gaze estimates. We observed that blinks
create artifacts in the OpenFace gaze estimates, as gaze estimates
rapidly switch to “looking down” and back to the original position.
To remove these artifacts, we first apply a median filter with a width
of 0.4 seconds. We chose 0.4 seconds because this represents the
typical duration of a blink and it effectively removes the artifacts.
Afterwards, we project the gaze estimates on the 2D camera plane.
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Figure 3: Left: Histogram of accuracies of our semi-
automatic eye contact detection approach obtained on
ground truth eye contact samples. Right: Corresponding ac-
curacies obtained on ground truth no eye contact samples.

3.2.2 Eye contact classification. The core idea of our method is to
extract regions of “eye contact” and “no eye contact” in the space
of gaze estimates described before. To this end, our method first
computes the convex hull C of all gaze estimates corresponding to
“eye contact” annotations. Due to noise in the gaze estimation, C
can be too large and encompass regions that correspond to “no eye
contact” annotations. To address this issue, we incorporate “no eye
contact” annotations in a second step. Specifically, we use kernel
density estimation to approximate the distribution of gaze estimates
during eye contact pe as well as the distribution of gaze estimates
when there is no eye contact p¬e . Areas within C for which p¬e >
pe , that is, for which there is more probability mass in the “no
eye contact” distribution than in the “eye contact” distribution are
re-labelled as “no eye contact”.

3.2.3 Evaluating the semi-automatic annotations. We evaluated this
eye contact annotation approach using leave-one-annotation-out
cross-validation for each video and interactant separately. That
is, for a given interaction for which we recorded n annotations
for interactant i , we used one annotation as test annotation and
computed eye contact annotations from the remaining n − 1 an-
notations as discussed before. We cycle through all possible test
annotations to compute the accuracy of the semi-automatic eye
contact annotations on that particular interactant. As the classes
are highly imbalanced, we compute accuracies for the eye contact
class and the no eye contact class separately.

Using this approach and after averaging the accuracies obtained
for each interactant in each interaction, we obtain an overall accu-
racy of 0.84 for ground truth “eye contact” frames, and an accuracy
of 0.74 for ground truth “no eye contact” frames. Figure 3 shows
the overall distribution of the accuracies obtained for each inter-
actant in each interaction. As can be seen from the figure, while
most accuracies fall into the higher regions, there is a number of
very low accuracies. When using our semi-automatic eye contact
annotations for analyses or evaluations on the dataset, it is there-
fore important to exclude these interactions that achieved only low
accuracy in the cross-validation evaluation.

4 METHOD
Figure 4 provides an overview of our proposed method to anticipate
averted gaze. At its core is a recurrent neural network with long
short-term memory (LSTM) units [Hochreiter and Schmidhuber
1997]. Inputs to the network are provided at each timestep for a
feature window wf . At the last timestep, the network outputs a
classification score for gaze aversion on the target windowwt . In
the following, we describe the extraction of features and provide
details on the prediction method.

4.1 Feature Extraction
We extract visual features from the person for which we want to
predict averted gaze (in the following also referred to as “target
person”), including eye contact, raw gaze, head pose and facial ex-
pressions, and speaking status. We do not extract features from the
interactant, as they were not effective in preliminary experiments.

4.1.1 Visual Features. We use OpenFace 2.0 [Baltrusaitis et al.
2018] to extract features from the interactants’ facial behaviour. In
detail, we extract the following sets of features:

• AUs: intensities of all 17 facial action units available in Open-
Face (17 dimensions)

• HeadPose: location and orientation of the head in camera
coordinates (2 × 6 dimensions)

• Gaze: gaze estimates obtained by OpenFace projected on the
camera plane (2 dimensions)

• EyeCont: eye contact detections obtained as described in
Section 3.2 (one-hot encoding, 2 dimensions).

4.1.2 Multimodal Speaker Diarisation. We further include a one-
dimensional feature that indicates whether the target person is
speaking at a particular moment in time (SpeakDiar). To this end, we
perform speaker diarisation using the pyAudioAnalysis toolkit [Gi-
annakopoulos 2015] and subsequently employ facial action unit
information to increase its robustness. The approach taken by pyAu-
dioAnalysis uses latent discriminant analysis (LDA) to reduce the
dimensionality of speech features. The method first clusters speech
data into a user-defined number of classes (in our case 2) and finally
uses a hidden Markov Model (HMM) for smoothing. While this
approach worked well on our data, some instances remained in
which the speaker prediction erroneously switched away from the
current speaker for a small number of seconds, only to switch back
afterwards. We address this issue by incorporating visual informa-
tion to check for the plausibility of short speaker switches. In detail,
we make use of a visual speaking indicator based on the sum of
the standard deviations of facial action units 25 (lips part) and 26
(jaw drop) as described in [Müller et al. 2018]. Given this speaking
indicator, we check all switches in speaker diarisation lasting less
than five seconds. The idea is that if the switch from a speaker i to
a speaker j in the speaker diarisation class is correct, it should also
correspond to a switch in the visual speaking activity indicator in
such a way that the visual speaking indicator for i is lower during
the switch as compared to before and after the switch, and the visual
speaking indicator for j is higher during the switch as compared
to before/after. If this is not the case, we ignore the switch in the
speaker diarisation, assuming i to be the speaker throughout.
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Figure 4: Overview of our eye contact anticipation method. Left: In the feature encoding network, each feature modality is
fed through a fully connected layer (FC Layer) separately and the resulting representations are concatenated. Right: features
are extracted on a feature window wf and fed through an embedding network consisting of a fully connected layer for each
timestep separately, before they are fed to a LSTM network. At the last timestep of the feature window the LSTM outputs a
classification score which is compared to ground truth extracted from the target windowwt .

4.2 Prediction Method
As a first step in our LSTM-based method, each feature channel
is embedded into a 16-dimensional space for each timestep sep-
arately using a fully-connected layer with ReLU nonlinearities.
Subsequently, these embedding vectors are concatenated and fed
into a LSTM layer with 32 hidden units and ReLU activation func-
tions. At the final timestep, a dense layer with softmax activation
functions is applied to obtain a classification score. We train our
models using categorical cross entropy between softmax output
and ground truth and add a l2-regulariser of 0.001. The learning
rate is adjusted dynamically by Adam [Kingma and Ba 2014].

We evaluate our models using 10-fold cross validation. In each
iteration, 10 percent of the data are used as test data, another 10
percent as validation data and the rest as training data. For splitting
the data into training, validation and testing sets, we make sure
that data from one interaction only appears in one of the three sets.
For a given train/val/test split, we train the model for 100 epochs
and select the model weights achieving best performance on the
validation data for evaluation on the test data.

5 EVALUATION
The task of anticipating averted gaze from multimodal non-verbal
cues involves extracting features on a feature windowwf and pre-
dicting whether gaze is mostly averted on a subsequent target win-
dowwt . For our LSTM network, we discretised time into segments
of 200ms given that this is approximately the length of short fixa-
tions [Salthouse and Ellis 1980]. As different application scenarios
may require anticipation of averted gaze on different time horizons,
we evaluated a range of different sizes of the target window wt ,
including 0.2, 0.6, 1, 2, 3, 4 and 5 seconds. The gaze aversion ground
truth is obtained by thresholding the probability of eye contact
according to our semi-automatic eye contact annotations onwt . In
case this probability is larger than 0.5, the sample belongs to the
“gaze aversion” class, and to the background class otherwise. We
use a length of the feature windowwf of 6.4 seconds, consisting of
32 timesteps of 200ms each, as this feature window length led to
the best performance in preliminary experiments.

We investigated performance of models trained and tested on a
single person (“person-specific” evaluation) as well as when trained

on several persons and tested on a disjoint set of other persons
(“person-independent” evaluation). For person-specific evaluation,
we exploited that the same "Wisdom From North" host appears
in 61 videos but interviewed different guests each time. For the
person-independent evaluation, we anticipated averted gaze of the
guests of both YouTube channels because they differ in every video.
Given that classes are highly imbalanced on both prediction tasks,
with averted gaze being the minority, we chose to evaluate our
method using average precision. Average precision evaluates a
ranking of test examples obtained from the classifier by computing
the average of the precisions obtained at all recall levels. While
a classifier outputting the negative class only would be able to
achieve high accuracy on such an imbalanced class distribution as
ours, its average precision would be very low.

5.1 Data Selection
In order to train our and evaluate our models with accurate ground
truth, we selected subsets of the whole dataset for which our semi-
automatic eye contact annotation method achieved at least an ac-
curacy of 0.7 both on the eye contact and no eye contact class for
the person for which we want to anticipate averted gaze. For the
person-specific evaluation this resulted in 51 out of 61 videos (32
hours) from "Wisdom From North" and an average accuracy for
eye contact detection of 0.87 on the eye contact class and 0.90 on
the no eye contact class. We did not conduct a person-specific eval-
uation for "The Spa Dr." because only 21 of 60 videos would have
been included with our accuracy-based selection criterion. For the
person-independent case this resulted in 76 of 121 videos (46 hours)
from both channels, reaching an average accuracy 0.85 on the eye
contact class and 0.83 on the no eye contact class.

5.2 Baselines
The first baseline we evaluated against is one that outputs a ran-
dom permutation of test examples. That is, the performance of this
random baseline in terms of average precision is equal to the rate
of positive examples, i.e. the probability of averted gaze on the
target time window. To be able to judge the performance of our
method more thoroughly, we used the eye contact information on
the feature window to design two baselines which are significantly
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Figure 5: Average precision achieved in the person-specific
evaluation for different feature channel ablations of our
method and baselines across different target window sizes.

stronger. Specifically, the baseline EyeCont-Last classifies a person
to have averted gaze on the target window, if she had averted gaze
(i.e. no eye contact) at the last timestep of the feature window. In
this way, the baseline exploits the assumption of a certain degree
of temporal smoothness of gaze behaviour. This baseline is opti-
mal for cases of constant gaze. The ranking used for computing
average precision is obtained by ordering examples according to
the classification decision. As relying only on one timestep for
prediction might be subject to noise, we also designed a second
baseline EyeCont-Mean which orders test examples according to
the probability of averted gaze observed on the feature window. We
also assume this baseline to be stronger than the random baseline,
as the probability of averted gaze on a time window right before
the target window should be closer to the probability of averted
gaze on the target window than the general probability of averted
gaze computed on the whole training set. Finally, we implemented
a baseline based on the assumption of constant gaze velocity. In
detail, we computed the velocity of OpenFace gaze estimates by tak-
ing the difference of the two last gaze points in the feature window.
We extrapolated the future gaze location using this velocity, and
checked whether it falls into the eye contact region at the middle
of the target window. We omit this baseline in the results, as it only
performed close to the random baseline, due to the tendency of
gaze extrapolations to overshoot beyond the eye contact region.

5.3 Person-specific Evaluation
Our person-specific evaluation simulates the case in which an eye
contact detection system is adapted to a specific person. As different
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Figure 6: Average precision achieved in the person-
independent evaluation for different feature channel
ablations of our method and baselines across different
target window sizes.

application scenarios require gaze anticipation for different time
horizons, we evaluated the performance of our model for different
target window lengths. Figure 5 shows the resulting average preci-
sion in averted gaze anticipation for different future time windows
and different input features to our method. As can be seen from
the figure, our method obtains a performance that is consistently
better or on-par with all other methods and baselines across all
target window sizes. The largest average precision is achieved for
a target window size of 0.2 seconds (0.85 AP for our method). As
expected, predictive performance decreases with larger target time
windows but remains in the range of 0.71 to 0.74 for target time
windows between 2 and 5 seconds length. In contrast, the baselines
using eye contact detections from the feature window consistently
remain below 0.7 AP with EyeCont −Mean achieving higher AP
than EyeCont − Last except for the 0.2 second target window.

We also compare our method to ablations with removed input
channels (e.g. Ours (SpeakDiar) uses only the speaker diarisation
channel as input). Here, the advantage of incorporating facial action
units is primarily evident for the target window sizes of 0.2 to 1
second. The largest gap between our method and the method with
the facial action unit channel removed (Ours (no AUs)) is at a target
window size of 0.6 seconds (0.79 vs. 0.76 AP). Starting from target
window sizes of 2 seconds, our method is only marginally better
than the method without facial action unit input (e.g. 0.742 com-
pared to 0.738 for target window size 3 seconds). Ablating further,
we observed that while eye contact input alone (Ours (EyeCont)) is
able to yield above-baseline performances for all target windows, it
is important to combine eye contact with speaker diarisation input
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Figure 7: Temporal evolution of the probability of inter-
viewer or interviewee having eye contact at the start (top),
or end (bottom) of speaking turns.

(Ours (EyeCont + SpeakDiar)) to obtain a strong boost in perfor-
mance. On the other hand, speaker diarisation input alone (Ours
(SpeakDiar)) is not sufficient to outperform the baselines.

5.4 Person-independent Evaluation
In the person-independent evaluation we investigated whether it
is possible to train an anticipation system for averted gaze that
generalises across people. This is significantly more challenging as
it adds the variability in behavioural patterns across people, along
with variability in the geometric configuration of recording camera,
screen and head location as well as in video quality.

The results of this evaluation, performed otherwise analogously
to the person-specific case, are summarised in Figure 6. Overall, the
differences between our method and the baselines are lower than
in the person-specific case, which reflects that exploiting behav-
ioral patterns is more challenging given the higher variability in
this person-independent evaluation. Again, our method reaches its
highest performance (0.75 AP) for the smallest target window size
(0.2 seconds). As could be expected, for larger target window sizes,
performance drops more quickly than in the person-specific evalu-
ation (0.44 AP at 2 seconds and 0.39 AP at 5 seconds). However, our
method stays consistently above the highest performing baseline
for each target window, e.g. outperforming EyeCont − Last with
0.75 AP compared to 0.66 AP for a 0.2 second feature window, and
outperforming EyeCont −Mean with 0.44 AP compared to 0.39 AP
for a 3 second target window. In contrast to the person-specific
evaluation, our ablation analysis reveals that the ablation of our
method using eye contact input only (Ours (EyeCont)) performs on
par with our method on almost all target window sizes. Only for
a target window size of 0.2 our method is slightly better than this
comparison approach (0.75 AP versus 0.73 AP).

5.5 Eye Contact at Speaker Changes
The comparably low performances in our person-independent eval-
uation point at the difficulty of generalising averted gaze anticipa-
tion across people. To obtain further insights into the variability of
averted gaze depending on person-specific and situational factors
we analysed the temporal evolution of eye contact around speaking
turn transitions. More specifically, we compared the average eye
contact behaviour of guests (interviewees) with the average eye
contact behaviour of the host of "Wisdom From North" (example
of an interviewer) at speaking turn transitions (see Figure 7). In
detail, we first computed for each person and interaction separately
the probability of having eye contact at an offset of ∆ seconds rela-
tive to a speaking turn transition. Subsequently, we averaged these
probabilities across all interactions of the host or all interactions
of guests, respectively. We performed this analysis separately for
speaking turn transitions at which the target person starts speaking,
and for speaking turn transitions at which the target person stops
speaking. We varied ∆ from -10 to 10, obtaining a 20 second time
window centered on speaker turn transitions. In this analysis, we
only considered speaking turn transitions for which there was no
second speaking turn transition 15 seconds before or after. In this
way, no effects of other speaking turn boundaries are introduced.

The results of this analysis (see Figure 7) show that for both
interviewer and interviewees the probability of eye contact dur-
ing listening (before starting to speak or after stopping to speak)
is higher than during speaking (after starting to speak or before
stopping to speak). This is a well known effect [Rossano 2013] that
has shown to even be robust enough to be exploited as a means
for weak annotation in the context of training multi-person eye
contact detection systems [Müller et al. 2018]. While the probabili-
ties of eye contact are similar (around 0.8) for both interviewer and
interviewee during listening, during speaking the probability of
eye contact is lower for the interviewer (below 0.4) than for the in-
terviewee (above 0.6). While it is difficult to attribute this difference
specifically to interpersonal- or situational causes, it underlines
the difficulty of person-independent averted gaze anticipation as
experienced in our earlier analyses.

A second interesting difference between interviewer and inter-
viewees observable in our analysis is a gaze aversion effect for
interviewees at around 2.5 seconds after beginning to speak. While
the probability of eye contact of the interviewer decreases steadily
before settling on a plateau, the interviewees probability of eye
contact decreases, reaches a local minimum at about 3 seconds
after starting to speak and eventually increases again. While the
data available to us does not grant a definite conclusion, one plau-
sible explanation is that interviewees show gaze aversion due to
cognitive load [Glenberg et al. 1998] when starting to speak. In
the interview situations in our dataset the interviewees often re-
spond to questions of the interviewer. It is likely that interviewee
cognitive load is high during the first seconds of their response
as recollection processes and planning of the response might be
especially resource-demanding at the beginning and level off only
later. In contrast, the interviewer is not confronted with questions
frequently and consequently does not show a gaze aversion effect
when starting to speak.



ETRA ’20 Full Papers, June 2–5, 2020, Stuttgart, Germany Müller, et al.

6 DISCUSSION
6.1 On Performance
Our method achieved above-baseline performance consistently
across all evaluation scenarios. Especially in the person-specific
evaluation, it improved on already strong baselines by a clear mar-
gin. For a small target window size, performances were in the region
of 0.76 to 0.85, which may already be reliable enough for some ap-
plications. For example, as a result of the large inherent variability
in social behaviour, a visual chatbot adapting its behaviour based
on anticipated user gaze might not be perceived too negatively
when it selects behaviour based on a false anticipation from time
to time. However, our evaluations for the person-independent case
also showed that the problem of averted gaze anticipation is far
from being solved. While we achieved high performance for small
target windows in this case as well, average precision dropped to
below 0.5 for target windows of 2 seconds and larger. Furthermore,
in the subject-independent case our method was not yet able to
harness the combination of different input features effectively.

It is surprising that the LSTM with only eye contact and speaker
diarisation input channels achieves a performance close to the full
model in many cases. As the performance of this reduced feature set
is still clearly better than the baselines we tried, it appears that the
LSTM is able to exploit the temporal patterns present in eye contact
and speaker diarisation channels in order to anticipate averted gaze.

Our analysis of eye contact at speaker changes showed signifi-
cant differences between interviewee and interviewer behaviour,
further emphasizing the challenge to create systems that can reli-
ably anticipate averted gaze in a subject-independent manner.

6.2 On Potential Applications
Automatic anticipation of averted gaze during interactions opens
up multiple possibilities for exciting new applications. In human-
agent interactions, a visual chatbot could use knowledge about
users’ future eye contact behaviour to adapt its behaviour. If for
example an agent wants to show something to the user, and at the
same time anticipates that the user will avert her gaze in the near
future and overlook the agent’s action, the agent could generate
an utterance to catch the user’s attention. Alternatively, if an agent
wants to be unobtrusive, it might wait with the initiation of its
action until it anticipates that the user will have eye contact again.

Anticipating averted gaze also enables new applications sup-
porting human-human interactions. Current research on real-time
feedback in social interactions is limited to intervening after a tar-
get behaviour has been observed [Damian et al. 2015; Schiavo et al.
2014]. With averted gaze anticipation, feedback systems could in-
tervene earlier, not allowing the undesired behaviour to occur in
the first place. Feedback could be given explicitly, e.g. by a symbol
appearing on the screen or presented via an augmented reality
device. Another promising possibility are subtle ways of changing
visual behaviour, e.g. by presenting cues that are not consciously
perceived but still influence gaze behaviour [Bailey et al. 2009].

Another exciting potential future application of averted gaze an-
ticipation is to investigate whether it can be used to train people to
exert stronger conscious control over their gaze behaviour. In a fash-
ion similar to biofeedback [Schwartz and Andrasik 2017], people
could be informed by e.g. a sound if averted gaze is anticipated.

6.3 On Possible Improvements and Extensions
While our work represents an important step towards automatic
averted gaze anticipation, several possibilities for future improve-
ments and extensions remain. First of all, performance of averted
gaze anticipation could probably be improved by increasing the
accuracy of eye contact detections used as input (currently between
80% and 90%). Furthermore, a highly accurate, fully automatic eye
contact detection approach would eliminate the eye contact la-
belling step and could be a building block of a system that adapts
itself to a target user during deployment. This is especially impor-
tant because our evaluations have shown that person-independent
prediction is particularly challenging. While latest methods for eye
contact detection have improved significantly, in terms of perfor-
mance in challenging everyday settings [Müller et al. 2018; Zhang
et al. 2017b], additional improvements are needed to provide close
to gold-standard predictions. Further performance improvements
in gaze anticipation might be gained by additional input features.
For example, the link between the difficulty of a question and gaze
aversion [Glenberg et al. 1998] could be exploited by verbal analysis.

Beyond performance improvements, our approach could also be
extended to novel settings. Appropriate eye contact behaviour of
robots was shown to be beneficial for feelings of social connected-
ness between robots and users [Zhang et al. 2017a] and robots can
make use of gaze aversion mechanisms to make a more thoughtful
impression and effectively manage the conversational floor [An-
drist et al. 2014]. Anticipating averted gaze in interactions situated
in physical spaces, potentially including complex tasks, can help
robots to initiate such appropriate gaze behaviour proactively in
response to users’ anticipated gaze, achieving seamless interaction.

Further possible extensions include outputtingmore fine-grained
predictions, going beyond a binary classification of averted gaze
vs. eye contact towards a richer set of predictions similar to mobile
attention forecasting [Steil et al. 2018]. It might also be helpful for
applications to anticipate the spatial location or the object towards
which gaze averted from the interactant will be directed.

7 CONCLUSION
Averted gaze is of fundamental importance in human social en-
counters and, as such, also is the ability to automatically predict
averted gaze for applications in human-machine interaction. We
proposed the first method to anticipate averted gaze in natural
interactions and evaluated it for different future time horizons on a
novel dataset of dyadic video conferences. Our analyses showed that
our method significantly outperforms baselines for both person-
specific and person-independent evaluation settings. While averted
gaze anticipation remains challenging, our work marks an impor-
tant step towards accurate and robust methods for anticipatory
human-computer interaction.
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