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Abstract
While deep reinforcement learning (RL) agents outperform humans on an increasing number of tasks, training them

requires data equivalent to decades of human gameplay. Recent hierarchical RL methods have increased sample efficiency

by incorporating information inherent to the structure of the decision problem but at the cost of having to discover or use

human-annotated sub-goals that guide the learning process. We show that intentions of human players, i.e. the precursor of

goal-oriented decisions, can be robustly predicted from eye gaze even for the long-horizon sparse rewards task of

Montezuma’s Revenge–one of the most challenging RL tasks in the Atari2600 game suite. We propose Int-HRL: Hier-

archical RL with intention-based sub-goals that are inferred from human eye gaze. Our novel sub-goal extraction pipeline

is fully automatic and replaces the need for manual sub-goal annotation by human experts. Our evaluations show that

replacing hand-crafted sub-goals with automatically extracted intentions leads to an HRL agent that is significantly more

sample efficient than previous methods.

Keywords Hierarchical reinforcement learning � Intention prediction � Eye gaze � Montezuma’s revenge �
Sub-goal extraction

1 Introduction

Recent advances in artificial intelligence (AI) in general,

and reinforcement learning (RL) in particular, have shown

promising results in developing agents that can interact in

complex environments and solve challenging real-world

tasks, such as robotic manipulation at scale [1]. Despite

these promising results, a key limitation of RL agents is

that training them requires extensive exploration and

training data. A large body of research [2–6] has thus relied

on computer games and other simulated environments to

develop and evaluate novel AI agents. One of the most

popular testbeds is games from the Atari2600 suite

implemented in the Arcade-Learning-Environment (ALE)

[6]. The Atari2600 games are particularly useful to eval-

uate RL agents [7] as they not only have complex visuals

but are also challenging for human players [8].

Research on the Atari2600 benchmark has focused on

deep RL [3, 4, 9]. While deep RL agents, such as Agent57

[3], have successfully beaten the human benchmark on all

57 Atari games, they are sample inefficient and, therefore,

require an excessive amount of training. Moreover, deep

RL methods suffer from a lack of explainability inherent to
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the deep neural networks used for Q-value estimation. A

more promising approach is hierarchical RL (HRL)

[10–12] that decomposes an RL problem into multiple sub-

problems, giving structure and improving explainability. A

key challenge with HRL is the decomposition of the task

that often requires manual and expert annotations, which is

tedious, time-consuming, and does not easily generalise to

other tasks or games.

To address these limitations, we propose a novel

approach to automatically identify sub-goals in HRL from

human eye gaze behaviour. Eye gaze is particularly

promising as the gaze location has been linked to human

intentions and goals [13–17]. We hypothesise that these

intentions and goals can be further linked to sub-goals so,

by predicting players’ intentions from their gaze, sub-goals

can be identified automatically. Inspired by prior work on

gaze-based intention prediction [13, 15, 16], we extract

four gaze features and train a Support Vector Machine

(SVM) model. We evaluate the SVM on Montezuma’s

Revenge (MR), a long-horizon sparse reward game from

the Atari2600 benchmark, with data from Atari-HEAD [7],

a data set that offers gaze data in addition to human

gameplay demonstrations. Our intention prediction model

achieves an average accuracy of 75%, demonstrating the

relation between intention and gaze behaviour, which

motivates the automatic extraction of sub-goals for hier-

archical reinforcement learning (HRL) agents. Finding

useful sub-goals, which is also known as the option dis-

covery problem [18], is a major issue in HRL. However, by

using user intents and gameplay demonstrations, our

method is able to not only refine and extract the sub-goals,

but also the sequence in which these have to be solved to

complete the game level. We then integrate the predicted

sub-goals into the HRL framework hg-DAgger/Q [12] and

show that this approach can solve the first room of MR

three times more efficiently – improving sample efficiency

from around 2.3 million to only around 450,000 training

steps.

While this strong improvement in sample efficiency also

holds for other imitation learning techniques [19] and

previous hierarchical methods [11], it is practically limited

to environments that are sufficiently static for generating

meaningful visual saliency maps. We discuss this limita-

tion in detail and showcase two additional Atari games that

fulfill the requirement, namely Hero and Venture. Both

games are similar to MR in that the agent has to navigate

different rooms with static layouts and both are also con-

sidered hard-exploration games because of their long

planning horizon [20]. However, a key difference to MR is

the extended amount of possible actions, where the agent

can shoot bullets on sprites (Venture) and even place

dynamite (Hero). Additionally, they differ in appearance

and dynamics of sprites, which makes them an ideal test-

bed for our method’s generalisation capabilities. We can

show that our automatic pipeline yields meaningful sub-

goals for both games, even though they exhibit a very

different gaze distribution in the demonstration data set.

In summary, our work makes three distinct contribu-

tions: (1) We propose a novel method to predict sub-goals

for HRL from eye gaze and human demonstration data.

Gaze information is used to predict user intentions that are

linked to the sub-goal locations, while demonstration data

provides the order in which these sub-goals have to be

solved to complete a task. (2) We evaluate our approach on

MR from the Atari2600 benchmark and demonstrate sig-

nificant improvements on two key limitations: sample

efficiency and the need for manual expert annotations. (3)

We extend our approach to two additional Atari games and

show its generalisation capability to other navigation

games. The pipeline requires minimal amount of demon-

stration and gaze data and is therefore suited to be easily

integrated with other HRL agents, effectively solving the

option discovery problem. Our results pave the way

towards new intention-based HRL methods that leverage

both hierarchical methods and additional human beha-

vioural data, such as eye gaze, to train more efficient agents

that can solve complex environments.

2 Related work

Deep reinforcement learning (RL) has shown great results

on the Atari benchmark but still struggles to learn robust

value functions from sparse feedback in long-horizon

games, such as Montezuma’s Revenge (MR). While many

solutions have been proposed [3, 4, 21], they require frame

samples in the range of billions, which forces researchers to

develop elaborate distributed training schemes that still

take a considerable amount of time to train [2]. Among

others, transfer learning has been proposed, such as inter-

agent transfer learning [22, 23] that leverages instructions

from an expert agent for faster convergence. However, the

domain shift between the training domain of the expert and

the task domain still poses a significant challenge. Hier-

archical reinforcement learning (HRL), on the other hand,

offers a way of exploiting the hierarchical structure of

decision-making tasks, guiding the agent towards mean-

ingful sub-goals, and effectively increasing the sample

efficiency of agents. Moreover, agents achieving consecu-

tive sub-goals, are directly interpretable, making HRL

particularly useful in domains, where explainability is

required.
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2.1 Hierarchical reinforcement learning

Early on, even before deep RL, two ideas have emerged in

HRL: the options framework [24] and feudal networks

[25]. Sutton et al. [24] have proposed to temporally extend

actions into options, which are composed of a policy, a

termination condition, and a set of states in which they

could be applied [24]. They have shown that Q-learning

could be generalised to learning policies over options and

that learning inside these options, called ‘‘intra-option’’

learning, allowed the agent to learn about the respective

options without executing them explicitly. Feudal net-

works, on the other hand, define a hierarchical structure of

managers and sub-managers that are only privy to the space

and temporal state at their granularity, effectively hiding

information from their superior and providing rewards to

their sub-managers even if their superior goal was not

satisfied [25]. Both hierarchical frameworks have demon-

strated much faster convergence than non-hierarchical

methods in their respective maze scenarios.

More recently, Kulkarni et al. have proposed a hierar-

chical approach to induce goal-directed behaviour that does

not use separate Q-functions as in the options framework

[11]. This made their method scalable and promoted shared

learning between options. To this end, they proposed a

two-level framework in which the top-level agent (meta-

controller) was responsible for choosing sub-goals, while

the low-level agent was concerned with achieving these

goals. Le et al. have extended this approach by integrating

the interactive imitation learning approach DAgger [26]

into the meta-controller [12]. This, however, introduced the

need for an expert during training. Their approach is also

similar to feudal networks [10, 25] in their hierarchical

structure; however, it needs significantly less data as it does

not use standard RL on the higher level. Vezhnevets et al.

have later argued that a disadvantage of [11] is the need for

pre-defined sub-goals and have chosen to learn goal

embeddings implicitly [10]. Subsequently, Veeriah et al.

[27] have proposed to learn the sub-goals directly in the RL

framework, using additional networks for generating and

evaluating new sub-goals, as well as primitive actions

based on past observations and a task encoding. While this

approach can be trained without any external data, it sig-

nificantly increases the complexity of the learned model.

Due to the training of the additional networks, the effi-

ciency gains of the hierarchical approach are annihilated,

as demonstrated in [27]. In this work, we take the best of

both worlds and leverage the information provided by gaze

data to extract sub-goals independently. This allows us to

train sample efficiently based on hierarchical guidance,

while neither requiring human supervision for sub-goal

selection, nor additional networks for sub-goal prediction.

Another work developed concurrently with ours is based

on the options framework but also defines intentions as

fully satisfied if a sub-goal is reached and evaluates a

reduction in available actions to the ones that are afford-

able in a given state (affordances) via attention. Nica et al.

[28] introduce these affordance-aware sub-goal options

with a respective model-free RL algorithm and find

empirically in a MiniGrid domain that this yields better

sample efficiency and higher performance in long-horizon

tasks. While they also incorporate visual attention, they do

so by applying it to limit an agent’s action choices. In our

work, on the other hand, we use visual attention maps

generated from eye gaze data to extract meaningful sub-

goals that can be directly selected by the meta-controller of

our more feudal network-like architecture.

2.2 Intention prediction

Intentions are goals and desires associated with a concrete

plan, i.e. an intention causes a sequence of actions that lead

to achieving a certain goal [29]. In other words, intentions

are the precursor of actions, which poses the question of

whether human intentions are able to pose as sub-goals for

HRL agents, where the hardest problem is to discover

suitable sub-goals [18]. However, human intention pre-

diction has never been done in this context before.

Therefore, before we can replace hand-crafted sub-goals

with human intention, we verify whether intention pre-

diction is feasible on MR.

Model-free intention prediction models rely on eye gaze

as the most important feature [13–17]. For a tabular sum-

mary of intention and activity recognition using eye gaze in

Virtual Reality (VR), PC, table-top, and real-world envi-

ronments, we refer the reader to Chen and Hou [16]. The

work of Huang et al. [13] is the most relevant to ours, as

they consider intention prediction as a multi-class classi-

fication in a real-world scenario. They achieved 89%

accuracy in their collaborative ingredient prediction task,

where a customer instructs a worker to add displayed

ingredients to a sandwich, and 76% accuracy with gaze

features alone. The gaze features used in their Support

Vector Machine (SVM) model were: total duration of

looks, most recently looked at, number of glances, duration

of first glance. We successfully test their model on MR

with gaze data from the demonstration data set Atari-

HEAD [7].

Belardinelli [17] offers a more general review on gaze-

based intention estimation, identifying application areas of

intention prediction as human-computer interfaces, human-

robot interaction, and Advanced Driving Assistance Sys-

tems (ADAS) with relevant works from the last decade of

research. However, the application of intentions to solve

the option discovery problem in HRL, or in our case, the
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sub-goal discovery problem, is, to the best of our knowl-

edge, a novel idea and constitutes the main contribution of

our work.

3 Sub-goal discovery

MR is one of the most challenging games in the Atari2600

suite because of its long planning horizon and sparse

rewards [12]. Unlike similar long-horizon planning tasks,

e.g. artificial grids [18, 28], MR is more challenging

because it features different rooms that change according to

the current level and collecting items allows for different

actions in them. Therefore, to identify a specific state of the

game, it is necessary to know the position of the agent,

room ID, level number, and the number of keys held [30].

The room ID is particularly important for our method

because gaze data should be evaluated separately for each

room so that gaze points can be mapped to the specific

areas of interest.

The required state information can be extracted directly

from the Arcade-Learning-Environment (ALE) via an

environment wrapper called Atari Annotated RAM Inter-

face (AtariARI) [31]. The wrapper parses information from

the state variables in the ALE and makes it available for

each environment step. However, the AtariARI wrapper

was not used in the collection process of the data set Atari-

HEAD [7]. To acquire the necessary labels subsequently,

we simulated the episodes played by humans. This was

possible as the original collection was done in a frame-by-

frame mode, labelling each consecutive action.

3.1 Sub-goal extraction

Our method for sub-goal extraction is inspired by previous

research that showed that visual attention is a predictor of

human intentions [13, 15–17, 32] and is further validated

by successfully performing intention prediction on the

extracted sub-goals in room one. The novel extraction

pipeline is visualised in Fig. 1: separate visual saliency

maps are calculated for each episode and further isolated to

only include the gaze data from the first room in the first

level. These saliency maps are generated by adding each

gaze point to the frame and passing a Gaussian filter over

the generated fixation map with variance r being one visual

degree (pixel / visual degrees of the screen). Finally, the

saliency map is normalised into the range of [0, 1]. An

example saliency map can be seen in Fig. 1 (a), where hot

areas (red/yellow) indicate a high focus of attention across

the selected time frame, and cold areas (blue) were not

gazed upon at all.

After generating saliency maps for all episodes, each

saliency map was thresholded, i.e. only values above 0.4

were kept. This threshold was fine-tuned to yield the best

results over the entire sub-goal extraction pipeline; a

qualitative assessment of other thresholds can be seen in

Fig. 2. If the threshold is set too low (e.g. here 0.2),

potential sub-goal bounding boxes are more frequent and

as in room one span almost the full area. If the threshold is

too high (e.g. here 0.5), on the other hand, there are not

enough sub-goal proposals (room one), or none at all, as

seen in room zero and room ten. With the fine-tuned

threshold, sub-goal proposals were generated, by drawing

an agent-sized bounding box around each remaining sal-

iency map point. These proposals were then processed with

a custom implementation of the non-maximum suppression

algorithm (NMS) [33]. In general, NMS is applied to

suppress overlapping bounding boxes if they exceed an

Intersection-over-Union (IoU) threshold, and, in our case,

boxes with higher saliency values were favoured. Then, the

remaining overlapping boxes were merged into one. After

the number of sub-goal proposals for each episode was

greatly reduced in this manner, the process was repeated to

combine proposals across all episodes, yielding a final

number of 11 possible sub-goals for room one, as shown in

Fig. 1 (b).

With the definition of intention in mind, where intention

directly leads to goal-directed behaviour [29], it is intuitive

Fig. 1 Sub-goal extraction pipeline: (a) proposal extraction is

performed from human attention maps for each episode and resulting

proposals are merged via non-maximum suppression (NMS), then

final proposals for one room are matched with human agents’

trajectories (b), yielding labelled sub-goals and visitation order (c)
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to only include sub-goals as labels for intentions that are

visited during gameplay. Therefore, we ran another simu-

lation of the game data from human players to find the sub-

goals that were visited and in which order (trajectory

matching). As MR is considered to be an almost deter-

ministic game, i.e. there exists a best sequence of sub-

goals, this resulted in almost identical orders across epi-

sodes. The remaining discrepancies were rectified by

implementing a majority vote.

Overall, this extraction procedure resulted in 7 remain-

ing sub-goals, labelled in order as shown in Fig. 1 (c):

moving from the middle ladder (0) to rope (1) and bottom-

right ladder (2), to crossing the middle area with the dan-

gerous and dynamic skull (3), to the bottom left ladder (4),

climbing up to collect the key (5), and then reversing this

order to get to the left door (11). Interestingly, in all the

episodes collected of human gameplay, only the left door

was used, most likely because this is the best route sug-

gested in MR solution guides.

In comparison with the four hand-crafted sub-goals

selected by the HRL framework of Le et al. [12], which

they hand-picked from the six sub-goals manually selected

by Kulkarni et al. [11], our automatic pipeline extracted the

same goals and added more areas of interest. In detail,

Kulkarni et al. originally performed object detection on the

image of room one and then chose the two doors, the three

ladders, and the key as entities to define relational goals in

the form of agent reaches goal.

3.2 Sub-goal analysis

We further analysed our sub-goal extraction pipeline

(Fig. 1) qualitatively by generating proposals and final sub-

goals for additional rooms of MR, with different saliency

map thresholds, but also with artificial saliency maps

generated by saliency models [34, 35], the results of which

can be seen in Fig. 2. We showcase Room 1 as the starting

point of the game, Room 0 as the second room reached

when choosing the left door, and Room 10 as it features a

special room layout. The saliency map threshold is a

hyperparameter that needs to be fine-tuned on the overall

extraction, where we have chosen 0.4 as it includes all

hand-crafted sub-goals proposed by prior work [11, 12]

with the meaningful addition of the area around the skull,

without adding insignificant goals as with lower thresholds,

but still including the door, which would be left out by a

higher threshold. While there are no hand-crafted sub-goals

to compare to for other rooms of MR, we can see that the

pipeline also selects meaningful sub-goals, e.g. the bottom

pathway in Room 0, the disappearing floor in Room 10, or

the diamonds that give an external reward in both. In

contrast, artificially generated saliency maps by MSI-Net

[34], a standard saliency model with state-of-the-art results

on the saliency benchmark CAT2000 [36], and DVS [35], a

saliency model optimised for data visualisations, have a

predominant focus on the agent itself and otherwise fail to

find important steps like the doors, even though they are

highlighted in the same colour as the key. Note here that

saliency map prediction was done on the RGB images.

For testing the intention prediction model of Huang

et al. [13] on our extracted sub-goals, we preprocessed the

gaze data following prior work [15, 16], extracting saccade

and fixation events and calculating the four features: total

duration of looks, most recently looked at, number of

glances, duration of first glance. We then implemented

intention prediction as a multi-class classification for the 7

sub-goals of room one with a SVM. In detail, we fine-tuned

a standard SVM classifier with RBF kernel via grid-search,

yielding a L2 regularisation value of C ¼ 510. This

intention predictor reached an average accuracy of 72.8%

Fig. 2 Sub-goal extraction examples on three rooms of MR with different saliency map thresholds from 0.2 to 0.5 on human gaze data, as well as

with saliency maps generated by the MSI-Net [34] and DVS [35] saliency models with a fixed threshold of 0.4
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(std 5.5%) in a 10-fold cross-validation on our data set of

20 episodes from the Atari-HEAD [7] demonstration data,

significantly outperforming the baseline of random chance

with 1
7
¼ 14:3%. We argue that this corroborates the effi-

cacy of using human gaze data as an indicator of intention

and motivates the extraction of sub-goals for HRL from

human intention.

4 Intention-based learning

4.1 Baseline

One approach for solving long-horizon decision-making

tasks is HRL, where two popular frameworks emerged in

the past: the options framework [24, 28] and feudal net-

works [10, 25]. Building upon a feudal architecture, by

combining deep HRL with pre-defined sub-goals, Kulkarni

et al. [11] are able to outperform naı̈ve deep Q-learning.

Their h-DQN model was tested on two delayed-reward

domains, including the first room of MR, where their

approach is able to reach the door after 2.5 M samples.

Taking the idea further, Le et al. [12] combined imitation

learning (IL) with HRL showing that their hierarchical

guidance model (hg-DAgger/Q) significantly reduces

expert effort compared to other interactive IL approaches

and is also able to learn faster and more robustly than

h-DQN, solving the first room of MR after 2.3 M steps.

Our baseline, the hg-DAgger/Q model by Le et al.,

consists of two levels, the meta-controller level, and the

agents level. They use the data aggregation method DAg-

ger [26] on the top level, which trains the meta-controller

policy with iteratively aggregated data sets. The meta-

controller is used to predict one of the four hand-crafted

sub-goals, initiating the corresponding agent.

On the low level, Le et al. used a double deep Q-Net-

work (DDQN) [37] with prioritised experience replay [38].

A major difference between their approach and h-DQN

[11] is that separate agents are trained for each sub-goal

instead of passing the goal vector as a feature into a single

policy network. This ensures the mitigation of the issue of

catastrophic forgetting and also has the advantage of sep-

arate exploration schedules. However, maintaining a sep-

arate network for each sub-goal is not scalable across

different rooms of MR.

Combining the low-level RL agents with hierarchical

guidance from the meta-controller ensures that the expe-

rience buffer for the DDQN only contains valuable samples

for the next sub-goal, as wrong meta-controller choices

terminate the episode. Le et al. argue that this is the main

reason for their higher robustness in training. However, Le

et al. also report that their architecture only learned all sub-

goals successfully in 50 out of 100 trials. This high vari-

ability is most likely due to different implementations and

random seeding, an issue common in RL [39], which

would also explain, why we were unable to reproduce their

results. Consequently, we will compare our results to the

ones reported in their paper.

In summary, hg-DAgger/Q [12] is significantly more

sample efficient than other methods [10, 11]. However, it

requires an expert at training time to select hand-crafted

sub-goals and only implements a rudimentary sub-goal

check.

4.2 Int-HRL model

Similar to [12], we use a hierarchical reinforcement

learning approach, with 8 possible actions (no action,

cardinal moving directions, jumping up, left, and right).

We keep training hyperparamaters consistent with hg-

DAgger/Q, i.e. an experience replay buffer of size 500,000,

frame skip and action repeat of four for the environment, a

linear scheduler for epsilon greedy exploration (from 1.0 to

0.02 in 200,000 steps), a network with three convolution

layers, ReLU activation and batch normalisation, followed

by two linear layers starting with 512 hidden nodes, trained

with an Adam optimiser with learning rate 1e-4. While we

ran multiple experiments with different hyperparameters,

we found only the following adaptions to consistently

improve training stability: First, by using a dueling deep

Q-Network (DQN) [40] architecture in addition to the

DDQN [37]. Second, only by including the lower left

ladder as an additional hand-crafted goal, we were able to

train the first hg-DAgger/Q agent to reach the first external

reward, the key.

While Kulkarni et al. [11] used six different sub-goals,

namely the two doors, the three ladders, and the key, Le

et al. [12] only chose the right door and the bottom-right

ladder, which they count twice, in addition to the key. For

our method, we replace these hand-crafted sub-goals with

the fields of interest derived from human gaze data, as

previously described, thereby expanding the set of sub-

goals used in [11, 12] to the 7 unique goals shown in

Fig. 1 (c). Interestingly, our human gaze analysis indicates

that all six goals used by [11] are relevant, even more so,

that the rope and the dangerous area around the skull are

additional fields of interest.

In addition to their importance for HRL, sub-goals are a

way of providing pseudo rewards [11, 12, 24] to populate

the sparse reward map in MR. Next to the sub-goal reached

reward Rsub�goal, we introduce a dense reward signal Rdir,

Rdist, and Rstep to further stabilise training.
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R ¼ Rsub�goal þ aRdir þ bRdist þ cRstep ð1Þ

We define a direction reward Rdir to steer the agent in the

direction of the next sub-goal. It is computed as the scalar

product of the selected action’s direction vector a~ and the

vector between the next and previous goal

g~¼ Gprev � Gnext:

Rdir ¼ \a~; g~[ ð2Þ

The distance reward Rdist guides the agent to the next sub-

goal by minimising the Euclidean distance between the

agent and current goal dac, as well as the previous goal dap,

and the distance between previous and current goal dpc:

Rdist ¼
ffiffiffiffiffiffi

dap
p

�
ffiffiffiffiffiffi

dac
p

ffiffiffiffiffiffi

dpc
p ð3Þ

The step reward Rstep penalises each time-step used to

reach the next goal with a constant s ¼ 0:001, which is also

used to scale Rdist and Rdir. In general, we represent the sub-

goals with their respective bounding box coordinates,

however, for all distance and direction calculations we use

the centre of the respective sub-goal’s bounding box.

While the direction reward Rdir is simple to implement,

the distance reward Rdist requires the agent location at

each step. Here, we propose to either use a specifically

trained object detector, which we tested with a pre-trained

FasterRCNN model [41] fine-tuned on 100 manually

labelled training examples or to use the RAM state labels

provided via the AtariARI Wrapper [31]. Both of these

approaches are more robust than the approach used in [12]

and, additionally, are able to track other non-static regions

of interest.

5 Results

We evaluated the full-sequence hierarchical model without

any dense reward, a single-agent model with negative step

reward and goal feature: c ¼ 1, and the single-agent model

with a distance reward: b ¼ 1 in comparison with the

direction reward: a ¼ 1. To further help the single-agent

models, we passed the sub-goals as additional feature

vectors, i.e. we add the four bounding box coordinates of

the respective sub-goal to the 512 hidden nodes before they

get passed into the two linear layers. Throughout all

experiments, we used an �-greedy exploration policy with a

linear scheduler ranging from 1 to 0.02 in 200 K steps, a

prioritised replay buffer [38], and a learning rate of 0.0001.

The results of this experiment are shown in Fig. 3. In line

with previous work, we show reward and sub-goals toge-

ther for easier comparison with the baselines [11, 12]. Each

sub-goal is considered learned when the trailing

performance is above 0.9, i.e. when the agent reaches the

goal in 90 out of 100 trials. Directly compared models are

trained with the same random seed to ensure comparability

[39].

The full model is the first to successfully learn to solve

the first room of MR by reaching the left door. The final

goal (11) is consistently reached by the full model after

only 450K steps. Hence, our model is more than four times

more sample efficient than our baseline [12], which needs

2.3M samples to complete the first room. Furthermore, our

new framework works without an expert, as we extracted

the chosen sub-goals previously from gaze data and per-

form a true goal reached check via RAM state mapping.

Overall, given labelled gaze demonstration data, the pipe-

line can be trained end-to-end with no manual effort.

In comparison with the full model, the single-agent

model with the goal feature and small negative rewards per

step does not succeed at all. As expected, the single dueling

DDQN agent suffers from a lack of exploration [12], i.e. as

Fig. 3 shows, the single-agent model fails to learn anything

new and gets stuck at the first sub-goal. Resetting the

schedule when a new sub-goal is explored was tested, but

did not succeed as it resulted in � being too high, which

also prevents learning. Further ideas for solving insufficient

exploration are included in the discussion and are left for

future work.

Providing a more dense reward structure by adding a

distance or direction reward improves the single-agent

model as it increases sample efficiency so that the model

learns to reach sub-goal 4, i.e. passing the skull and

reaching the lower left ladder (see the distance and direc-

tion reward model in Fig. 3). In our trials, the distance

reward even facilitates learning to reach the key sub-goal

(5), which provides the first external reward. While per-

forming slightly worse, the direction reward is simpler to

implement as it does not require knowledge of the agent’s

location. Both models still suffer from the issues encoun-

tered by the single agent, and performance deteriorates

after 200K steps when the �-exploration schedule reaches

its final value. However, this confirms that more intrinsic

rewards improve performance and should, therefore, be

incorporated into future models.

5.1 Generalisation

To evaluate the generalisability of Int-HRL, we evaluated

it on two other Atari2600 games, namely Venture and

Hero. Both games are considered hard-exploration games

and cannot be solved with standard deep learning approa-

ches [20]. We have selected them because they share

important similarities with MR, as they are navigation

games with different rooms and levels, where items need to

be collected (Venture) or miners need to be rescued (Hero),
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while sprites and other obstacles need to be overcome. The

separate rooms allow for a natural partitioning of gaze data

and static items are good candidates for sub-goals. These

characteristics make both games suitable for our method.

While both games require the learning of more actions, i.e.

18 instead of 8 as in MR, they also have a more dense

reward structure. Additional differences to MR are in their

appearance and the mobility of dangerous sprites. The

successful application of our method, therefore, showcases

the generalisability to other navigation environments with

clear gaze partitions.

The pipeline is the same as for MR: First, we label the

demonstration data from Atari-HEAD [7] to include room

and level ID, as well as player positions, with the AtariARI

wrapper [31]. Then, we generate saliency maps from gaze

data for each room and episode separately and use a

threshold to turn them into bounding box proposals (see

Fig. 1 a). These bounding boxes are then merged and

decimated via NMS and the resulting sub-goal proposals

are further refined by trajectory matching, i.e. by checking

whether the players visit them (see Fig. 1 b).

5.1.1 Venture

Venture is an action game in which the player needs to

explore different rooms and collect treasures, while evad-

ing and shooting sprites. It is considered one of the 10 most

challenging Atari games [3], as it requires long-time

planning. The player starts in an overview room (see Fig. 4

room 8), from which four other rooms can be reached. To

complete this first level, an item has to be collected in each

room without running into sprites or movable walls, e.g. in

room 3. Once all items have been collected and the last

room has been left, the level concludes automatically and

the player starts in a new overview room. As can be seen in

Fig. 4, Venture is not as deterministic as MR and it also

uses the full action map with 18 possible actions, since the

additional firing action can be combined with all movement

actions. Another key difference is the smoothness of the

visualisations; in Venture, the frames flicker constantly, as

many objects are only rendered every second frame; most

likely, this was due to the capacity limits of the original

Atari console. Moreover, the sprites that need to be evaded

or shot are more dynamic and move across the entire rooms

in contrast to MR, where the only sprite, the skull, is

confined to a small area on the bottom.

Our extraction pipeline yields more sub-goal proposals

(see Fig. 4: top row blue) for Venture than for MR, even

with an updated saliency threshold of 0.9. Therefore, the

trajectory matching step becomes more important. How-

ever, as can be seen for room 2 and room 0, the trajectory

matching still results in more final sub-goals. The higher

amount of sub-goals makes running a full model with

separate agents for each sub-goal, as in [12], computa-

tionally infeasible. On the other hand, it provides an even

denser reward structure and facilitates the learning of our

single agents with goal feature Rsub�goal and distance

reward Rdist. While the simple sub-goal feature agent is not

able to complete the first room because it wanders around

too much and gets killed by sprites, the single agent with

distance reward solves the room after 560K steps. In

comparison with MR, where the first room with 12 sub-

goals is solved after 450K steps it is much slower, how-

ever, in MR the only model capable of successfully solving

the first room is the full agent model. Here, the single-agent

model requires significantly less resources. We cannot

provide further baseline results as [11, 12] have not been

evaluated on any games except MR and both would require

expert annotation of sub-goals.

Fig. 3 Step-wise sub-goal trailing performance of Int-HRL and baseline with sub-goal 5 as a first external reward from the key and sub-goal 11

the right/left door, which completes the first room
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Analysing the gaze distribution for Venture, we find that

gaze on the agent (21%) and its vicinity (47%) is lower

than in MR with 33% and 68%, respectively. Additionally,

the percentage of gaze on sub-goals (31%) is also signifi-

cantly lower than for MR (57%). While this can be partly

explained by the larger agent size in MR and the higher

amount of sub-goals in Venture, we hypothesise that

attention bias plays another key role. The flickering of

frames due to partial rendering, which specifically affects

the enemy sprites, attracts visual attention [42]. Further-

more, the number of sprites and their dynamics is much

higher in Venture, therefore, visual attention is less focused

on single areas and more dispersed across the entire screen.

In summary, guiding the agent with constant feedback

towards meaningful sub-goals is particularly beneficial in

Venture, as agents with less supervision get easily dis-

tracted by the characteristics of the game.

5.1.2 Hero

In Hero, the player also navigates different rooms and has

to evade sprites but the overall goal is to rescue miners lost

in tunnels and the game iteratively expands the number of

rooms for each level. For example, in Fig. 4 the first two

levels of Hero are depicted; while the first room stays the

same, level 2 becomes deeper with additional rooms up to

the final room 4. A key characteristic of this game is the

player’s ability to place dynamite to tear down walls,

which is necessary, e.g. in room 1 of both levels, to reach

the tunnel to go further down. Additionally, as can be seen

in Fig. 4, almost half of the screen is dedicated to a display

of game statistics, such as the power bar, number of lives as

player icons, and number of remaining dynamite. The

power is required for the jet pack to smoothly fly down the

tunnels, if it is empty, the player falls down and looses a

life. Therefore, player’s attention is drawn to the power

display, in fact, in the demonstration data from Atari-

HEAD [7], 39:9% of the time the player’s gaze is on the

display. Hero is particularly interesting, as it is considered

challenging [20] and because of the distinct skills that an

agent needs to master, e.g. placing dynamite, while main-

taining attention on the available resources.

To facilitate more meaningful sub-goal proposals from

the start, we have excluded gaze data that was below the

player screen, i.e. on the display, as it would not yield

reachable sub-goals. However, there is a clear attention

bias towards the bottom of the screen and, therefore, sub-

goals for Hero tend to have a small y-axis offset. Apart

from the y-axis offset, our sub-goal extraction pipeline

yields ideal sub-goals, where each corresponds to either an

external reward location, i.e. rescuing the miner or shooting

sprites, or important navigation areas, where dynamite has

to be placed or tunnels need to be explored. Interestingly,

the gaze distribution on the Hero agent is significantly

lower than in Venture or MR with only 13:4% and 29:5%
on its vicinity, most likely due to the aforementioned

attention bias towards the player statistics display. How-

ever, the percentage of gaze on the extracted sub-goals

remains similar to Venture with around 33:7%. In contrast

to Venture, where there are a lot of sub-goal proposals, in

Hero all proposals but one are matched with the agent’s

trajectory. In detail, in room 3 of level 2, the sub-goal

Fig. 4 Sub-goal proposals (blue) and final annotations (cyan) for

Atari game Venture (top) and Hero (bottom). For both games our

pipeline yields meaningful sub-goals, corresponding to external

reward locations (e.g. items), but also important areas that need to

be navigated and dangers to be evaded
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proposal is on one of the sprites, but because the agent can

simply fly past the enemy, the trajectory matching algo-

rithm excludes this proposal. This means, for Hero, the

final trajectory matching step is mainly used to determine

the sub-goal order. In this regard, Hero is similar to MR

with a deterministic order of tasks that need to be

performed.

Our single model with distance reward is able to solve

the first room of Hero after only 120K steps, which

includes acquiring the skill of placing dynamite and mov-

ing out of the way. Surprisingly, the single model works

better than the full model here, most likely because the full

model starts a new agent after reaching the first sub-goal,

which then begins to explore from scratch and often gets

killed by placing dynamite. However, as mentioned before,

the single model is preferred over the full model, as it

requires much less resources and could be scaled for

solving the entire game.

6 Discussion and outlook

We have shown that gaze features are indicative of inten-

tions by successfully training a simple intention prediction

model on the first room of the Atari game MR. Further, we

developed a novel sub-goal extraction pipeline from gaze

data. To this end, we labelled an available demonstration

data set via simulation, analysed the visual attention heat-

maps for each room, and aligned the proposals with the

agent trajectories. This process yields sub-goals on MR that

are on par with hand-crafted ones from prior work [11, 12]

and objectively meaningful sub-goals on games, where no

comparable expert annotations exists. We demonstrate the

efficacy of our sub-goal extraction pipeline by using the

extracted sub-goals to train an HRL agent that can solve the

first room of MR significantly more sample efficiently than

any previous method. Moreover, our pipeline is fully

automatic and allows for a transparent explanation of agent

behaviour. In comparison with previous methods, where

sub-goals have been chosen manually without further

analysis [11, 12].

Generalisability to other Atari games. We have chosen

the long-horizon sparse reward game MR of the Atari2600

suite because it can be structured into sub-tasks across

different static rooms and standard RL still struggles with

solving it efficiently. Other games available in the Atari-

HEAD [7] data set are not suitable for this analysis because

agents and sprites can move across all lanes, because

objects of interest scroll too fast across the game screen, or

because areas of interest are trivial, as in shooter games,

where all sprites are at the top of the screen and agent

movement is restricted to be horizontal across the bottom.

Other games similar to MR are Hero and Venture, where

different rooms need to be navigated, which include static

sprites or objects and clear goals. While Hero is structured

like a search tree, iteratively expanding the depth of

exploration for solving a level by finding people lost in the

caverns, Venture is like a Maze with an overview screen

from which the agent can reach different rooms to find

treasure. We have shown the generalisability of our method

on these games by running our sub-goal extraction pipe-

line, where only the threshold parameter needs to be tuned.

While both games exhibit a unique gaze distribution with

attention bias towards flickers (Venture) or a resource

display (Hero), our gaze-based extraction method still

found meaningful sub-goals, either corresponding to

external rewards or areas that are difficult to navigate.

Generalisability to other domains. One requirement for

our approach is a fixed layout of rooms for extracting

meaningful information from gaze data. Areas of interest

need to be stationary enough for a high duration of atten-

tion and depict isolated or unique objects. This limits the

approach to specific task domains, a key limitation that is

not present for other imitation learning methods [12, 19].

While our method is unlikely to succeed in 3D or first-

person view domains like VizDoom [43], there are other

potential application domains [44–46]. For example,

Mannering et al. [47] have shown the efficacy of predicting

intentions for the collaborative multi-agent game Over-

cooked, a test-bed for zero-shot cooperation that might be

tackled with intention prediction and Theory of Mind [44].

Additionally, navigation environments as found in POP-

Gym [45], specifically labyrinth escape and explore, or the

more complex tasks of MiniGrid [48], or MiniGrid’s

extension Xland-MiniGrid [46] might benefit from inten-

tion-based HRL.

Demonstration and gaze data requirements. In contrast

to other gaze-assisted approaches [19, 49] using IL, we do

not require demonstration data during training. Nor do we

need expert annotations as in our baseline [12]. In fact, our

method only requires data from one naive demonstrator, as

proven with MR, where there was only a single annotator

in our demonstration data set Atari-HEAD [7]. Therefore,

Int-HRL is not only sample efficient in terms of RL steps,

it is also sample efficient in terms of demonstration data

and does not require the costly collection of a large data

set.

Scalability of HRL method. While the full-sequence

model has outperformed all other baselines tested on the

first room of MR in terms of sample efficiency [10–12], it

needs to be more scalable to solve the entire game. The

HRL approach based on Le et al. [12] requires the separate

handling of 12 agents in the first room of MR, but an
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additional 23 rooms need to be explored to solve the first

level. While both [10, 11] only use a single low-level

agent, the former’s successful trials were not reproducible

[12] and the latter requires 200 M samples for the first

room alone, most likely getting close to the 10 billion

samples needed by standard deep RL approaches [3]. We

have tested single agents with more dense reward struc-

tures (Rstep, Rdist, Rdir). However, we were unable to

circumvent the issue of insufficient exploration in single

agents. In future work, we would like to address this by

adding per-episode and full-game novelty values as

intrinsic rewards, which succeeded in deep RL methods

[3, 9].
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