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Wearable Computing Laboratory, ETH Zürich
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Abstract—Two aspects of the design and characterization of
activity recognition systems are rarely elaborated in the litera-
ture. First, the influence of system performance with variability
in sensor placement and orientation is often overlooked. This
is important for the deployment of robust activity recognition
systems. Second, the influence of labeling variability is also
overlooked, especially w.r.t. label boundary jitter and labeling
errors. This is important during the development of an activity
recognition system as acquiring labels is costly. We argue that
there is a need to explicitly address the consequences of such
variability in publications, together with the mitigation strategies
that are used. Elaborating on this is required to move the state
of the art towards real-world applications, such as in industrial
wearable assistance applications or pervasive healthcare.

I. PROBLEM STATEMENT

We discuss two aspects towards the design of more robust
activity recognition systems for real-world deployment. First,
there is a need to clarify system performance under variability
of sensor characteristics, in particular placement and orienta-
tion variability. This is important as it is difficult, impractical
or uncomfortable to ensure precise on-body sensor placement.
Second, there is a need to clarify the effect of variability in
labeling (especially label boundary jitter and label accuracy).
Annotating sensor data is time and cost intensive. We believe
that for eventually complex activity or gesture recognition to
be deployed in real-world applications there there is a need for
strategies and methods to become immune to this variability.

A. Sensor placement and orientation variability

Sensor placement and orientation is usually critical to
activity recognition performance. Changes in placement and
orientation (hereafter configuration) affect the sensor signal
patterns corresponding to activities. As classifiers are trained
using the sensor signals acquired in a specific configuration,
it is important to have the same sensor configuration during
operation. This is a constraint that should be relieved:

• It is unrealistic to expect from end-users (e.g. an elderly
person) to carefully place and align sensors.

• It is often not comfortable to have always the same sensor
configuration. For instance, a user may want to displace
a sensor-enabled bracelet, just to let the skin breath.

• Some form-factors should allow for variability, such
as sensorized clothing or sensorized ornaments. Users
expect sensorized systems to behave as usual (e.g. it
should be possible move a sensorized bracelet just as a
normal one).

t = s |t− s| = 1 |t− s| > 1
HCI 84.9% 2.1% 50.0% 21.0% 48.7% 24.4%

Fitness 83.0% 5.7% 65.7% 4.1% 42.0% 9.1%

TABLE I: Classification accuracy when training the classifiers
on sensor s and testing them on sensor t which is: the same
as s; it’s immediate neighbor, or a neighbor further apart.
The recognition accuracy quickly drops with larger distance
between the train sensor s and test sensor t.

• In the general case, activities should be equally well
recognized regardless of where a sensor-enabled device
is located, such as on the arm, or in a pocket - so-called
“opportunistic sensor configurations” [1].

Thus, in real-world applications sensor configuration vari-
ability is expected or desired. Current literature often does not
explain how a system behaves when the sensor configuration
changes. This must be documented in order to:

• Assess the robustness to real-world use of a system
• Compare methods that filter out, or attempt to render the

activity recognition chain robust to these variations.
Two examples illustrate the effect of these variations on

activity recognition performance. In [2], we investigated the
effect of sensor displacement on body segments in two scenar-
ios: HCI gestures (5 classes), and fitness activity recognition
(6 classes). For the latter, we recorded data from sensors
placed on the lower leg and thigh at regular intervals of
about 5cm (see figure 1). Figure 2 illustrates the effect of
sensor displacement by showing the activity classes in a two-
dimensional feature space. Even for a displacement of only
5cm (two sensors just next to each other), there is already a
significant change in the structure of the feature space. Table
I shows the that the recognition accuracy drops rapidly as the
sensor used during operation is is further away from the sensor
used during training.

In [3] we investigated the effect of rotational variabil-
ity on the recognition performance of manipulative gesture
recognition in a car maintenance scenario. During testing, we
simulated this variability by rotating the coordinate system of
the accelerometers. We investigated the effect of noise with
various sensors contributing to activity recognition (fusion
of the decisions of discrete HMM classifiers operating on
individual sensor nodes). In figure 3 we show increased
rotation the activity recognition performance quickly drops.
Larger sensor sets partly allows to reduce this effect.



Fig. 1: The fitness scenario includes 6 classes: (1) flick kicks,
(2) knee lifts, (3) jumping jacks, (4) superman jumps, (5) high
knee runs, (6) feet back runs. For each class, the extent of the
body movements is shown on two rows.

Fig. 2: Feature space of the fitness dataset.

B. Labeling

Annotations are required with supervised machine learning
approaches. Acquiring labels is time consuming, costly and
error prone.

We collected a dataset for the recognition of complex
activities in sensor rich environments: the OPPORTUNITY
dataset [4], [5]. Subjects performed a sequence of temporally
unfolding and intertwined early morning situations: getting
up, relaxing, preparing a coffee, drinking it, preparing a
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Fig. 3: a) Effect of rotational noise level on the fusion
classification ratio for different cluster sizes.b) Comparison
between naive Bayesian fusion and majority voting fusion for
cluster size 1 and 19

sandwich, eating it, cleaning up, and relaxing. We estimate
that over 11000 and 17000 object and environment interactions
occurred. We performed three types of annotations: online
annotation by multiple experts (up to 5), automatic annotation
of some activities by accurate ambient sensor (e.g. reed
switches in the infrastructure), and offline video-based.

Our experience showed that online annotation is error prone
when subjects freely behave in the environment. Besides,
during long and tedious recordings the experts may have
difficulties concentrating. This results in missing labels, wrong
labeling, or wrong label boundaries.

For some activities, however, online labeling is without
alternative. We investigated the recognition of reading activity
from eye movements in mobile daily life settings [6]. The
experimental scenario involved participants reading text during
different types of locomotion, including sitting, standing, and
walking. Although reading involves characteristic eye move-
ment patterns, online labeling was required to also catch the
subtle and only short reading segments. These segments were
particularly common during walking as participants regularly
interrupted reading to check the way ahead. Labeling reading
activity turned out to be challenging. A wearable video-based
eye tracker would probably have allowed for the most accurate
labels. Such systems require to wear headgear and additional
equipment to process the video streams. To minimize the in-
fluence of labeling on the natural behavior of the participants,
we labeled using the Nintendo Wii wireless controller. This
approach turned out to be particularly useful as it allowed
us to label robustly and fast, which resulted in the best
quality of labels possible without distracting the participants
too much. Although we still didn’t achieve perfect ground
truth annotation, with a view to a future realistic application
scenario we decided to use the labels without manual tuning.

Automatic annotations are a bit more accurate, however it
is also possible to have mislabeled data. For instance a person
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Fig. 4: Labels from offline video-based annotation (top)
and automatic annotation from ambient infrastructure (down).
There is label boundaries jitter and and some labels do not
match.

opens a drawer, but not sufficiently so that the reed switch
signals that the drawer has been opened half-way: an observer
would correctly label this. The automatic system would detect
the drawer is “not closed” but never reaches the “half-open”
position and may discard the label as an artifact.

In the OPPORTUNITY setup 3 VGA cameras filmed the
scene. Offline video-based annotation is usually considered as
the “ground truth”, yet errors may still occur:

• Small objects: it was difficult from the floor-mounted
camera to distinguish objects in the hands. People anno-
tating the video could in most case identify the objects,
but it some case this wasn’t possible and labels were
omitted - or in the worst case wrongly assigned.

• Label boundaries: intertwined activities are difficult to la-
bel accurately as there isn’t a clear pause between activity
primitives (e.g. reach, grasp). There is no common agree-
ment on these transitions and different persons labeling
the data may interpret the video footage differently.

• Rapidity of human activities: activities can be quite fast.
Finding the start and end of an activity (e.g. object
grasped or released) is also limited by the speed of
the camera. With a 15-fps camera, a jitter of the label
boundary of 66ms (1 frame) isn’t surprising. Usually
more is expected as ones needs to look at the image
sequence to identify activity primitives.

Thus, the notion of “ground truth” must be taken with a
grain of salt:

• Wrong labels may be assigned, or segments of uninter-
esting data may be mistakenly labeled (user error)

• Some labels may be missing (e.g. due to the impossibility
to distinguish an object)

• The label boundary may not be aligned to the activity
boundary. For multiple repetitions of the activity, the
alignment is likely to vary (label boundary jitter).

In figure 6 we illustrate the effect of inaccurate labels on
the recognition performance, and the size of the training set.
Inaccurate labels affect the recognition accuracy, measured
according to the accurate ground truth (see table 5). The
figure shows that a larger training set may be beneficial as
unbiased labeling errors may cancel out (e.g. the curves with
79% 72% label accuracy). In figure 4 we show the difference
between user-annotated data and automatically annotated data,
including jitter in label boundaries and label disagreements.

II. DEALING WITH SENSOR AND LABELING VARIABILITY

The problems mentioned above are not unique to our experi-
ence. Making activity recognition insensitive to placement and

Label
Accu-
racy

Classification
Accuracy

100% 79%
79% 71%
72% 66%
34% 28%

Fig. 5: Classification ac-
curacy function of label
accuracies.
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Fig. 6: Gesture recognition accu-
racy in function of the number of
training instances and accuracy of
the labels.

orientation variability has been investigated by many groups.
Kunze et al. looked at methods to automatically infer on-
body sensor placement and orientation [7], [8] and proposed
methods to mitigate the effect of these variations [9]. Lester et
al. [10] placed accelerometers at the shoulder, the wrist and the
waist of subjects performing several activities of daily life to
train an activity recognition system to be independent to sensor
placement. In our own work, we investigated unsupervised
classifier self-calibration as a way to deal with unpredictable
sensor placement variability [2], and genetic-programming ap-
proaches to the generation of placement independent features
[11].

The problems of labeling variability or errors are also not
unique to our experience. The work of Van Laerhoven et
al. that focuses on extremely long recordings and relies on
subjects labeling their activities a-posteriori also has to deal
with inaccurate labels. This is mostly addressed by the use
of efficient visualization and “smart” annotation tools, as well
as the collection of sufficiently large amounts of data [12].
More generally, any use of experience-sampling is faced with
similar problems. Classification with so-called “fuzzy labels”
or “soft labels” is now actually an active area of research
(see e.g. [13], [14]), especially with the use of crowd-sourced
labeling of images and data on the web. In our own work [15]
we investigate online learning, as a way to continuously adapt
classifiers as new instances of activities arise, with opportunis-
tic “automatic” labeling when ambient infrastructure is capable
of providing activity labels. We showed this with ContextCells,
an architecture for lifelong learning capable of sensing, online
learning, classification and label exchange between cells.

III. METHODOLOGICAL AND REPORTING
RECOMMENDATIONS

We outlined the problems caused by sensor placement and
orientation variability, and the lack of accurate ground truth in
the more complex activity recognition scenarios. Yet, in most
of the literature published on activity recognition (including
the work of our group) there is generally no mention of the
consequences in terms of recognition performance.

Rather, one usually sees lots of efforts aiming at sys-
tematically placing sensors at the exact same locations in



each repetition of an experiment. In real-world deployment of
wearable activity recognition systems it is difficult, impractical
or uncomfortable to achieve this. This approach is thus likely
to create problems when the system is eventually deployed.

It is also not unseen to optimize label boundaries after
recordings as a way to increase recognition accuracies. We
don’t believe this is legitimate as it only hides a problem that
is also very likely to reappear when implementing activity
recognition systems for real-world use. Instead, we suggest to
put efforts in developing methods that are insensitive to - or
are able to cope with - these kinds of variabilities. By using or
developing methods robust to label variability or errors, one
benefits from reduced labeling effort (and label ‘tuning’), and
overall reduced costs and faster ‘time to market’.

Therefore, we suggest that the following points should be
mentioned in publications w.r.t. sensor configurations:

• There should be a characterization of the influence of
sensor variability - in particular orientation and placement
- on the recognition performance.

• There should be a mention of the strategy used to mitigate
the influence of placement/orientation variability (if any).

• If the system is insensitive to this variability, it is also
interesting to outline the reasons for this.

With respect to labeling, we recommend:

• In general, ground truth annotations should not be tuned
afterwards as this artificially increases the recognition
performance. If they had to be tuned, this should be
justified by the authors and a performance comparison
based on the raw and tuned labels should be provided to
show the influence of the tuning.

• There should be a characterization of the effect that
the annotation quality has on recognition accuracy, as it
indicates the robustness of the methods used.

• It should be indicated whether annotations during the
experiment influenced the natural behavior of the par-
ticipants. Otherwise, authors should explain how such an
influence was prevented.

• There should be mention of the characteristics of the ma-
chine learning algorithms (or other parts of the recogni-
tion chain) that makes it robust to label quality variability.

• We suggest to also investigate new methods that are
robust to label variability, as it may reduce cost and time
associated with data labeling.

• Or there should be mention of the characteristics of the
dataset that make it immune to the above problems (e.g.
a very large dataset).

Obviously, addressing this in all publications is time con-
suming. It may not be meaningful or desired for articles pre-
senting new methods or new application scenarios. However,
for systems eventually designed for “real-world use” this is an
aspect on which we invite the community to reflect on.
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