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Abstract— Activities of daily living such as drinking and
eating can be severely impaired for patients suffering from
neurodegenerative diseases. One promising solution are assis-
tive devices that apply corrective forces while still allowing
the intended movements. However, real-time estimation of
the required forces requires a detailed understanding of the
limb’s impedance characteristics. Here, we test and validate
the stiffness response of a computationally efficient neuro-
musculoskeletal arm model and its response to various force
perturbations. We demonstrate that the arm model predicts
stiffness characteristics that closely match experimental data
recorded from humans and presents real-time applicability,
allowing for implementation in practical scenarios and. Addi-
tionally, we predict the stiffness response for novel force levels
and arm configurations. In the future, these predictions could
be used to estimate corrective forces for assistive devices in
real-time.

I. Introduction
Neurodegenerative diseases may profoundly impact

daily activities such as eating, drinking, and handling
objects due to motor control impairments like tremors
or overshooting movements. Assistive devices emerge as
a promising solution, capable of mitigating these ef-
fects by providing real-time corrective forces. Predicting
impedance of the human upper limb in real-time is
crucial to determine adequate assistive fores. Impedance
describes the resistance of the arm to external forces and
can be measured by applying perturbations to the hand
[1]. The resulting displacement or hand force allows us to
estimate physical parameters such as arm stiffness, vis-
cosity, and inertia [2]. Stiffness ellipses (SE)—primarily
characterized by their size (i.e. the area of the ellipse),
shape (i.e. the ratio between the length of the major
& minor axis of the ellipse), and orientation (i.e. the
direction of the major axis about a fixed coordination
system)—serve as visual representations of impedance
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[3]–[5]. While experimentally measuring arm stiffness is
essential to validate upper limb models, experimental
assessments of arm stiffness often have limitations, due to
a limited number of participants, measured force levels,
or measured limb postures.
Therefore, model-based studies employing musculoskele-
tal models to simulate the human arm’s response to
externally applied forces present a promising alternative.
While such approaches offer a comprehensive characteri-
zation of upper limb impedance properties, most studies
have relied on simplified models, limiting the inclusion
of crucial details such as the number of used muscles
or muscle stiffness properties [6], [7]. Recently, a more
complex computational neuromusculoskeletal model in-
tegrated into OpenSim has been employed for a more
detailed assessment of the mechanical impedance [8].
Despite this model’s ability to closely mimic human
arm behavior observed in experimental settings, its
computational efficiency may not be suitable for the
integration of real-time control in assistive devices.
Thus, the purpose of this study is to test, for the first
time, whether the computationally efficient arm model
in MuJoCo physics engine [9], [10] can accurately predict
stiffness ellipses as presented in experimental in-vivo
studies. We test the prediction for different force levels
and different arm configurations targeted at activities of
daily living. Our study provides novel data to estimate
corrective forces for assistive devices and may be a
starting point to predict them in real-time.

II. Related Work
Various studies have conducted experiments or numer-

ical simulations to estimate the impedance characteris-
tics of the upper limb [3], [4], [8], [11]–[13]. However, to
the best of our knowledge, most of these studies did not
present stiffness values directly but rather present their
results as graphical representations, i.e. stiffness ellipses
which make precise comparisons difficult. Thus, we tried
to digitize and extract presented values and summarized
them as a comprehensive comparison in Table I, which
encapsulates the core details of each experiment in terms
of duration, level and direction of the applied force and
the stiffness values.

Concerning the direction of the external perturbation,
in the majority of the cases, an approach involving
eight different angles (deviating by 45°) per experiment
was chosen. An exception is the study by [13] where



the perturbation followed only three force directions
(from elbow-to-hand line, from hand-to-shoulder line,
and force halfway of the latter two). The duration of
the external force application ranges between 10ms and
2 s, while the magnitude and the type of the applied
force vary from 2N to 20N and from stochastic to
predefined perturbations, correspondingly. The resulting
displacement of the endpoint is in the order of 2mm-
108mm. Finally, the recorded stiffness is mainly between
400N/m and 700N/m for holding a posture. During
movements, stiffness of up 5000N/m have been reported
[14].

III. Methods

A. Musculoskeletal model
In this paper, we used the arm model described by

Ikkala et al. [10], who adapted it from [18]. It is a
rigid-body arm model that contains 26 Hill-type muscle
actuators with non-elastic tendons, 17 segments, and has
five degrees of freedom (DOFs) with physiological joint
axis orientations, and joint angle limits. Both research
works [10], [18] that used the ”MOBL ARMS” model
claimed that the model behavior closely resembles the
reaction to external forces of a biological arm.

B. Simulation Setup
We conducted simulation experiments via Python and

MuJoCo to control the simulation environment and arm
model. We performed the analysis of the data extracted
from the simulation in Matlab.

The experiments included four different arm config-
urations (see Fig. 1 and Table II). They were chosen
to represent a variety of arm configurations; a relaxed
position ((a) represented by the Initial position), a
position representing reaching for objects ((b) Extended
position), a position representing eating ((c) Eating
Position) and one position representing the main con-
figuration tested in previous experiments ((d) Litera-
ture position). Each of these equilibrium configurations
was reached by setting a vector of constant muscle
stimulation values applied as open-loop signals. Note
that these stimulation values were found heuristically
to resemble the desired each arm configuration. A given
vector of constant muscle stimulations results in a unique
equilibrium position (in the absence of external loads).
In each of these positions, we applied perturbation forces
in 8 different directions in 45◦ steps and with different
force levels ranging between 0.5N-25N. The constant
forces were applied for 100ms.

Angle
Arm Conf. Initial Extended Eating Literature

Shoulder angle 4◦ 69◦ 82◦ 75◦

Elbow angle 87◦ 22◦ 129◦ 93◦

TABLE II: Joint (shoulder and elbow) angles for each
arm configuration.

In our analysis, we wanted to focus on the stiffness pre-
diction by the muscles and exclude possible contributions
of the joint limit torques. To ensure this, we excluded
perturbation force levels for an arm configuration where
joint limit sensors detected constraint force >8Nm in
one or more perturbation directions.

(a) Initial Position (b) Extended Position

(c) Eating Position (d) Literature Position

Fig. 1: Figures 1a-1d depict the postures achieved by the
different levels of muscle activation.

C. Computation of Stiffness
Previous studies [11], [15] demonstrated that when the

arm is stabilized at an equilibrium posture, the endpoint
response to a perturbation could be described by an
impedance model factoring in inertia, Mend, viscosity,
Bend, and endpoint stiffness, Kend as shown in Eq. 1.
Fend represents the force vector caused by the enforced
perturbation displacement dx.

Menddẍ+Benddẋ+Kenddx = −dFend (1)

where dx = x(t)− x0 and dF = F(t)− F0. x0 and
F0 denote the position coordinates and the force prior to
the onset of the perturbation, correspondingly. For small
and short perturbations, Kend, Mend, and Bend were
assumed to be constant and exhibit posture-dependent
variations [11], [16]. Consequently, despite the inherent
nonlinearity of the neuromuscular system, linear estima-
tion may be suitable for such perturbations [17]. Based
on [12], Eq. 1 can be simplified as follows:

Kenddx = −dFend (2)

After measuring the displacements dx caused by a
known unit of force F, we calculated the endpoint



TABLE I: Comprehensive comparison of existing studies presenting impedance characteristics of the human arm.
Work Direction Duration Force Level [N] Displacement [mm] Stiffness [N/m]

[11] 8 different randomly chosen angles 400ms 4 10 (simulations)
5 (human exp)

Kxx = [81.2, 257.9]
Kyx = [−291.5,−82.6]
Kxy = [−277.9,−86.7]
Kyy = [107.5, 448.2]

[12] 8 different (45◦) 100ms [5, 10, 15, 20] 7
Kxx = [90, 95]

Kyx = [65.5, 72.8]
Kxy = [−78.1, 86.6]
Kyy = [151.9, 189.1]

[4] 8 different (45◦) 300ms 2 7 Major axis: [450, 750]
Minor axis: [200, 350]

[8] 8 different (45◦) 1.2 s 2 2 Major axis: [400, 700]
Minor axis: [20, 350]

[13]
3 directions:

(1) force directed from elbow-to-hand line
(2) force directed form hand-to-shoulder line

(3) force halfway of (1) & (2)
-

a bandlimited stochastic position perturbation
Fx = [−10, 10]
Fy = [−30,−10]

x, y nearly independent
10 Major axis: [1700, 2100]

Minor axis: [50, 350]

[14]
3 directions:

45◦

165◦

285◦

50ms [3, 4, 5] - Major axis: [1000, 5000]
Minor axis: [50, 400]

[1] 0.05◦ to 2.3◦ for the shoulder
0.025◦ to 3.9◦ for the elbow 120 ms - either 4 or 8 -

[15] 8 different (45◦) 1.5 - 2 s
Fx=[-3,1.5]
Fy=[-2,4]

dx=[-6,-4]
dy=[4,7]

Major axis: [600, 1000]
Minor axis: [100, 400]

[16] 8 different (45◦) 0.3 s - 6-8 Major axis: [200, 600]
Minor axis: [30, 170]

[17] randomly chosen from the set
Fy = k(2π/8), k = 1..8

300ms
position perturbations
Fx = [−3, 2]Fy = [−2, 4]

8 -

stiffness matrix, Kend, based on Eq. 2, considering
the data from all perturbations in all directions for a
given arm configuration and force level (least square
optimization). Once Kend was computed, it was then
multiplied by a unit displacement matrix that contained
the sin and cos functions, as seen in Eq. 3, to calculate
the stiffness ellipse.

[
FK

x (t)

FK
y (t)

]
= Kend ·

[
cos (t)

sin (t)

]
,where 0 < t < 2π (3)

Acknowledging the importance of the stiffness ellipses’
characteristics in relation to the existing literature, the
orientation of the major axis, ϕ, shape, s, and area, A, of
each ellipse were computed [13]. Orientation corresponds
to the angle (measured in rad) that is formed by the
major axis of each stiffness ellipse regarding the shoulder
joint, shape is a dimensionless metric defined as the ratio
of the minor axis length to the major axis length and
area is the space that is occupied by each ellipse. For
the sake of simplicity, the orientation of the major axis,
ϕ, will be called orientation.

ϕ = arctan(
Umax_y

Umax_x
) (4)

s =
amin

amax
, (5)

A = πaminamax (6)

Umax_x and Umax_y are the elements of matrix
U, obtained by Singular Value Decomposition of the
Kend matrix [19]. The half axis lengths are amin =√

λmin(KT
end) and amax =

√
λmax(KT

end), where λ(·)
denotes the eigenvalue operator.

Fig. 2: Graphical representation of the stiffness ellipses,
when applied force equals 2N, obtained from the simula-
tion of this work in comparison with the corresponding
ellipses extracted from the literature (red and orange
ellipse were digitized from [4] and [8]).

IV. Results
In the following, we show the results of perturbing

the arm model for different arm configurations with
varying force perturbation levels and present the result-
ing stiffness values. A graphical representation of the
stiffness ellipses from our arm model in comparison to
literature values extracted from [4] and [8] demonstrate
the adequacy of our approach to predict upper limb
stiffness values (see Fig. 2). We chose force perturbation
of 2N as the reference value for this comparison, as
this force level is most commonly chosen in experimental
studies (see also Table I). Both the size and orientation
of the predicted stiffness ellipses closely match previously
presented values from the literature.

In previous studies, most experimental work only
recorded upper limb impedance values for one specific



force level. To understand the influence of the pertur-
bation force, we applied different constant force levels
to the Literature arm configuration and investigated
the final hand position (x- and y-coordinates) that the
model reached after an external perturbation was applied
for 100ms for forces between 0.5−3N (see Fig. 3a).
Note that, we also tested higher forces and they led to
even higher and more distorted displacements, here not
shown for clarity. The final hand displacement changes
depending on the applied external forces: The larger the
applied perturbation force, the larger the resulting hand
displacement. The orientation of the corresponding stiff-
ness ellipses is orthogonal to the position data, and the
larger the applied force, the smaller the resulting shape
of the ellipse (Fig. 3b). Stiffness values for the Literature
arm position fluctuate from −53N/m to 777N/m across
the range of the investigated force magnitude (Table III).
Note that, lower external perturbations result in higher
stiffness values, and their non-diagonal elements of the
Kend tend to approach equality, resulting in an increased
level of symmetry. Forces higher than 5N/m formulate
negative non-diagonal elements with remarkably lower
stiffness values.
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Fig. 3: Raw position data and stiffness ellipses for the
Literature arm configuration across different external
forces.

We also varied the equilibrium position of the arm
to which the perturbation was applied. In all four in-
vestigated arm configurations (Initial, Extended, Eating
and Literature position), we observe that smaller levels
of applied forces result in smaller displacements (Fig.
4). Notably, for smaller force values (up to 1.5N), the
eight tested perturbation directions and the resulting
displacements form an ellipse, which was consistent with
in-vivo experiments. The applied forces increase beyond
a threshold, the model deviates from the anticipated
behavior observed at lower force levels and the linear
approximation hypothesis underlying Eq. 1 does not hold
anymore (see R2 values in Table III).

The results demonstrate a clear influence of the arm
configuration and the applied force level on the orienta-
tion and magnitude of the stiffness (see Fig. 5a and 4d).
All four arm configurations seem to follow a general pat-
tern: as the external force increases, the area of the SEs
declines while their shape mostly remains at the same
level and the angle denoting their orientation appears to

TABLE III: Stiffness matrix values ([N/m]) for the
Literature configuration per applied force level and the
corresponding R2.

Force [N] Kxx Kxy Kyx Kyy R2

0.5 690.7 446.9 501.8 433.2 0.90
0.75 756.8 516.8 555.9 489.9 0.97
1 777.0 536.5 570.7 503.8 0.98

1.25 766.9 520.1 560.1 487.8 0.96
1.5 741.1 487.1 536.3 457.7 0.92
1.75 706.6 444.6 505.3 419.8 0.87
2 664.4 396.4 468.2 377.3 0.82
2.5 564.4 289.6 383.0 285.8 0.75
3 469.6 192.6 302.9 203.1 0.68
5 153.7 -35.9 34.7 11.3 0.45
7.5 135.7 -23.0 22.7 25.0 0.45
10 134.9 -20.3 17.1 28.2 0.59
12.5 99.5 -6.9 -6.9 31.4 0.52
15 53.4 -30.2 -45.5 15.6 0.54
17.5 65.6 -13.7 -52.8 22.6 0.54
20 109.0 51.1 -47.2 50.0 0.45
25 236.5 198.0 -24.0 107.3 0.41

vary in a way that is dependent on the in-question arm
configuration. This holds true up to a certain force limit
which is correlated to the arm configuration. Beyond this
threshold, a notable divergence in kinematic behavior
emerges, and additionally, R2 dropped below 0.8 (Table
III) highlighting the inadequacy of the ellipsoidal model
for stiffness calculation under these conditions. However,
for the Extended arm position (Fig. 4b), at least one of
the joint limits is exceeded for each angle of all the tested
force levels in this arm configuration, which influences
their ellipsoidal representation (Fig. 5b).

Comparing the different arm configurations (Fig. 6),
when an external force of 2N was applied, show that the
Literature arm position (red line) and the Initial arm
position (blue line) exhibit significantly smaller areas
compared to the stiffness ellipse corresponding to the
Eating position (purple line), which displayed a larger
size and higher eccentricity. Note that, we chose this
reference perturbation level of 2N, as this force level
was most commonly chosen in experimental studies (see
also Table I).

Additionally, we investigated the computationally effi-
ciency of the model. As reported in [20], the arm model
used in MuJoCo runs roughly 600 times faster than the
original OpenSim model [18]. To further test its real-
time applicability, we evaluated the averaged run time
over 1000 forward simulations: On average, a reaching
movement with a 1 s simulation duration takes 0.0162 s
on a standard laptop equipped with an AMD Ryzen 7
PRO 4750U processor and 16 GB RAM.

V. Discussion
In this study, we conducted a detailed investigation

of the upper limb stiffness responses to a range of
external perturbations in four arm configurations using
a computationally efficient arm model in MuJoCo.

We showed that our results closely match previously
published experimental data and that the arm model is
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Fig. 4: Final hand position (x- and y-coordinates) for
each arm configuration after an external force perturba-
tion was applied for 100ms. Higher forces lead to even
higher and more distorted displacements, here not shown
for clarity.

able to replicate impedance values for existing literature
values. Notably, previous experimental findings [3], [4],
[21] have drawn similar conclusions about the trends
of the stiffness ellipse orientation, findings that were
corroborated in our study. Specifically, our evaluation
of stiffness characteristics, with 2N as the reference
perturbation value, indicated that the range, orientation,
and shape of stiffness ellipses closely mirror findings
reported in the literature (see Fig 2).

Additionally, we showed that for different arm config-
urations, the same perturbation force leads to variations
in stiffness ellipses regarding their size, orientation, and
shape. In line with the experimental results of [11],
[22], the major axes of the stiffness ellipses tend to be
oriented toward the subject’s shoulder, in our case, for
example, along the x-axis for the extended position which
is orientated towards the shoulder (see green curve in Fig.
6). Moreover, both experimental and numerical studies
[8], [11], [22] have shown that stiffness ellipses tend to
be more elongated towards the distal boundaries of the
workspace and become more isotropic (more circular)
toward proximal or more medial and posterior positions.
In our results we also find a more isotropic ellipse in the
eating configuration (Fig. 6, purple ellipse). Finally, in
more medial and posterior stating positions, such as the
eating configuration in our case, the size of the stiffness
ellipses is larger, confirming higher hand restoring forces
(see purple line in Fig. 6 and [8]).
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Fig. 5: Stiffness ellipses for each arm configuration.
Higher forces lead to even higher and more distorted
displacements, here not shown for clarity.
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Fig. 6: Stiffness ellipses obtained from the different arm
configurations for a reference perturbation level of 2N.

Varying the perturbation force level showed that, up to
a certain level, the larger the applied force, the larger the
resulting hand displacement (see Fig. 3b, and Fig. 5) and
the smaller the stiffness ellipses. Interestingly, the repre-
sentation of impedance characteristics using stiffness el-
lipses was only reasonable for force perturbation levels up
to 2N, as shown by the coefficient of determination (R2)
indicating how well the characteristics could be explained
using the stiffness ellipse representation. For larger force
levels, we observed that the R2 drops below 0.8, and
in some cases, additional forces occur due to the joint



limit constraints (see Table III). This indicated that the
stiffness ellipse representation was inadequate to predict
corrective forces beyond this threshold. Consequently,
our study emphasized the need for employing model-
based approaches to estimate impedance in assistive
devices. Models allow for predicting force responses for
larger force ranges, thereby addressing the limitations
posed by the existing stiffness ellipse representations.

Although we demonstrated that our numerical arm
model predicts human impedance characteristics closely
aligned with experimental studies, our approach had
some limitations due to simplifications of the neuromus-
culoskeletal model compared to the human arm. While
the MuJoCo arm model allows for computationally
efficient real-time calculations, it employs a Hill-type
muscle model that neglects tendon elasticity [10], [23]
and short-range stiffness [24]. We expect that these
simplifications influencing our results predominantly in
large perturbations where tendon elasticity may become
more relevant and in very fast and small perturbations,
where the current muscle models underestimate the
force [23], [25]. Furthermore, our use of an open-loop
strategy to control the equilibrium positions of the arm
neglected spinal reflexes. Although we determined muscle
activation patterns heuristically and did not specifically
consider the influence of co-contraction [21], the results
still matched the literature (Fig. 2). Lastly, despite
experimental evidence [3], [4] suggesting that the size
of the ellipses fluctuates among human subjects due to
variance in the muscle activation, joint configuration and
the muscle length-tension relationship, our results did
not account for individual characteristics, given that our
numerical setup is currently purely deterministic.

In conclusion, we have shown that the investigated
arm model in MuJoCo can predict stiffness values in
alignment with experimental studies. In the future, we
will use this computationally efficient model to predict
corrective forces for assistive devices in real-time.
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