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a b s t r a c t 

Predicting the target of visual search from human eye fixations (gaze) is a difficult problem with many 

applications, e.g. in human-computer interaction. While previous work has focused on predicting specific 

search target instances, we propose the first approach to predict categories and attributes of search in- 

tents from gaze data and to visually reconstruct plausible targets. However, state-of-the-art models for 

categorical recognition, in general, require large amounts of training data, which is prohibitive for gaze 

data. To address this challenge, we further propose a novel Gaze Pooling Layer that combines gaze in- 

formation with visual representations from Deep Learning approaches. Our scheme incorporates both 

spatial and temporal aspects of human gaze behavior as well as the appearance of the fixated locations. 

We propose an experimental setup and novel dataset and demonstrate the effectiveness of our method 

for gaze-based search target prediction and reconstruction. We highlight several practical advantages of 

our approach, such as compatibility with existing architectures, no need for gaze training data, and ro- 

bustness to noise from common gaze sources. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

As eye tracking technology is continuing to mature, there is an

ncreasing interest in exploring the type of information that can be

xtracted from human gaze data. Within the wider scope of eye-

ased activity recognition [1,2] , search target prediction [3–5] has

ecently received particular attention as it aims to recognize users’

earch intents without the need for them to verbally communicate

hese intents. 

Previous work on search target prediction from gaze data (e.g.

3,4] ) is limited to specific target instances that users searched for,

.g. a particular object. This excludes searches for broader classes

f objects that share the same semantic category or specific ob-

ect attributes. However, such searches commonly occur if the user

oes not have a concrete target instance in mind but is only look-

ng for an object from a certain category or with certain character-

stic attributes. 

To address these limitations, we broaden the scope of search

arget prediction to categorical classes, such as object categories
∗ Corresponding author. 

E-mail addresses: sattar@mpi-inf.mpg.de (H. Sattar), fritz@cispa.saarland 

(M. Fritz), andreas.bulling@vis.uni-stuttgart.de (A. Bulling). 
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r attributes. One key difficulty in achieving this goal is acquiring

ufficient training data. We have to recall that object categorization

nly in the past decade has seen a breakthrough in performance

y combining deep learning techniques with large training corpora.

ollecting such large corpora is prohibitive for human gaze data,

hich poses a severe challenge to achieve our goal. 

Therefore, we propose an approach for predicting categories

nd attributes of search targets that utilize readily trained CNN

rchitectures and combines them with gaze data in a novel Gaze

ooling Layer (see Fig. 1 ). The gaze information is used as an at-

ention mechanism that acts selectively on the visual features to

redict users’ search targets. These design choices make our ap-

roach compatible and practical with current deep learning ar-

hitectures. Through extensive experiments, we show that our

ethod achieves accurate search target prediction for 10 categories

nd 10 attribute tasks on a new gaze data set that is based on the

eepFashion data set [6] . Furthermore, we evaluate different pa-

ameter settings and design choices of our approach, visualize in-

ernal representations, and perform a robustness study w.r.t. noise

n the eye-tracking data. 

In addition to search target prediction, we want to understand

o what level of detail such targets and intends can be visually re-

onstructed. Cognitive neuroscientists have shown the first success

f visualizing mental images based on fMRI data [7,8] . While we

https://doi.org/10.1016/j.neucom.2020.01.028
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2020.01.028&domain=pdf
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Fig. 1. We propose a Gaze Pooling Layer that leverages gaze data as an attention 

mechanism in a trained CNN architecture. Our methods using this new layer predict 

the target of visual search in terms of categories and attributes from users’ gaze as 

well as decode gaze data into a visualization of the search target. 
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also want to assess aspects of the mental state, our task is funda-

mentally different from prior work in two aspects: (1) While they

aim to decode a specific image that was shown to a person, our

goal is to decode a visual search target. (2) While they are using

fMRI data, we are using gaze data. On a related note, we believe

that gaze data is particularly interesting to investigate, as it is prac-

tical and affordable to collect and use in many application scenar-

ios of future interfaces [9,10] . 

As we are targeting to decode images of categorical search tar-

gets, generating visualization is difficult due to strong intra-class

variations. However, recent advances in deep learning have led

to a new generation of generative models for images. Recently,

[11] generates images of objects from high-level descriptions. They

transfer the high-level text information to a set of attributes (e.g

hair color: brown, gender: female). These attributes are used later

on to build an attribute-conditioned generative model. 

Hence, we approach the decoding of search targets from gaze

data by bringing together our gaze encoding method and catego-

rization with state-of-the-art category-conditioned generative im-

age models. We show the first proof of concept that visual rep-

resentations of search targets can be inferred from human gaze

data. We present a practical approach, as it respects the difficul-

ties in collecting large human gaze datasets. Encoder and decoders

are trained from large image corpora and transfer between the two

representation is facilitated by a semantic layer in between. We

show the importance of localized gaze information for improved

search target reconstruction. 

2. Related work 

Inferring the target of visual search is a task studied both in

computer vision [3–5,12–14] and human perception [15–18] . Exist-

ing approaches vary in the granularity of the predictions, either fo-

cusing on predicting specific object instances [3,4,19] or operating

at the coarser level and predicting target categories [5,13] . The type

of user feedback varies as well. While [3–5] solely use implicit in-

formation obtained from human gaze, [12–14] require the user to

provide explicit relevance feedback. In the following, we summa-

rize previous works on gaze-supported computer vision, user feed-

back for image search and retrieval, methods for search target pre-

diction, Decoding visual experience using from EEG or fMRI signals,

as well as, works in computer vision area which used autoencoders

to decoded images from feature space. 

2.1. Gaze-supported computer vision 

Our approach is related to an increasing body of computer vi-

sion literature that employs gaze as a means to provide supervi-

sion or indicate salient regions in the image in a variety of recog-
ition tasks. Visual fixations have been used in [20,21] to indicate

bject locations in the context of saliency predictions, and in [22–

4] as a form of weak supervision for the training of object detec-

ors. Gaze information has been used to analyze pose estimation

asks in [25,26] as well as for action detection [27] . Gaze data has

lso been employed for active segmentation [28] , localizing im-

ortant objects in egocentric videos [29–31] , image captioning and

cene understanding [32,33] , as well as zero-shot image classifica-

ion [34] . 

.2. User feedback for image search and retrieval 

To close the semantic gap between the user’s envisioned search

arget and the images retrieved by search engines, Ferecatu and

eman [13] proposed a framework to discover the semantic cat-

gory of the user’s mental image in unstructured data via ex-

licit user input. Kovashka et al. [12] introduced a novel explicit

eedback method to assess the mental models of users. Most re-

ently Yu et al. [14] proposed to use free-hand human sketches as

ueries to perform instance-level retrieval of images. They consid-

red these sketches to be manifestations of users’ mental model

f the target. The common theme in these approaches is that they

equire explicit user input as part of their search refinement loop.

ouse clicks were used as input in [13] . A. Kovashka [12] used a

et of attributes and required users to operate on a large attribute

ocabulary to describe their mental images. In [14] the feedback

as provided by sketching the target to convey concepts such as

exture, color, material, and style, which is a non-trivial step for

ost users. In contrast, in our work, we do not rely on a feedback

oop as in [12] or explicit user input or some form of the initial

escription of a target as in [12–14] . We instead use fixation in-

ormation that can be acquired implicitly during the search task

tself, and demonstrate that such information allows us to predict

ategories as well as attributes of search targets in a single search

ession. 

.3. Visual search target prediction 

Human gaze behavior reflects cognitive processes of the mind,

uch as intentions [35–37] , and is influenced by the user’s task

38] . In the context of visual search, previous work typically fo-

used on predicting targets corresponding to specific object in-

tances [3–5] . For example, users were required to search for a spe-

ific book [4] , a specific binary patterns [3] among other distract-

ng objects. Zelinsky et al. predicted search targets from subjects’

aze patterns during a categorical search task [5] . In their experi-

ents, participants were asked to find two categorical search tar-

ets among four visually similar distractors. 

In contrast, in this work, we aim to infer the general proper-

ies of a search target represented by the object’s category and at-

ributes. In this scenario, the search task is guided by the mental

odel that the user has of the object class rather than a specific

nstance of an object [13,39] . This presents additional challenges as

ental models might differ substantially among subjects. Further-

ore, [3–5] required gaze data for training, whereas our approach

an be pre-trained on visual data alone, and then combined with

aze data at test time. 

.4. Image generation and multi-modal learning 

Due to recent advances in representation learning and con-

olution neural networks, image generation becomes possible.

ecently, generative adversarial networks (GANs) [31,40–46,46–

0] were used to generate realistic and novel images. GANs con-

ists of two parts: a generator and discriminator. The discrimi-

ator is designed to discriminate between generated images and
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Fig. 2. an illustration of a sample test environment. The eye tracker is placed on a 

table with the test subject behind the chin rest. The subject is instructed to not use 

any electronic devices that could cause distraction. The room is kept quiet during 

data collection. No one enters the room or exits the room during the data collection. 

Only the main author and the subject were in the room 
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raining data. However, training GANS is a challenging task due

o the min-max objective. A stochastic variational inference and

earning algorithm was introduced by Kingma and Welling [51] . A

ower bound estimator is achieved via the re-parameterization of

he variational lower bound. Consequently, the standard stochastic

radient method can be used to optimize the estimator. However,

he posterior distribution of latent variables is usually unknown.

ang et al. introduced a general-optimization based approach that

ses image generation models and latent priors for posterior infer-

nce [11] . They generated images conditioned on visual attributes.

n our work, we employ their idea of conditional generative models

n the context of inferring search intends from gaze data. We are

he first to address the reconstruction of the search target from fix-

tion data, which is more difficult than prediction as it addresses

 continuous output space. 

.5. Visual experience reconstruction using fMRI 

Recent developments in functional magnetic resonance imag-

ng(fMRI) make it possible for neuroscientist to generate links be-

ween brain activity and the visual world. In a more advanced set-

ing, Nishimoto et al. reconstructed natural movies from brain ac-

ivity [8] . They proposed a motion energy encoding method to de-

ode the fast visual information and BOLD signals in the occipi-

otemporal visual cortex and fit the model separately to individual

oxels. In another work, Cowen et al. proposed to reconstruct hu-

an faces from evoked brain activity using multi-variant regres-

ion and PCA [7] . In their experiment, they asked participants to

ook at an image and then tried to reconstruct this specific image

rom fMRI data. All of the above tasks tried to reconstruct the seen

mages. In contrast, our approach decodes the visual search target

f user’s which only resides in the user’s mind. Also, we are not

sing fMRI but gaze data which is arguably more practical and af-

ordable to collect and use. 

. Data collection 

No existing dataset provides image and gaze data that is suit-

ble for our search target prediction task. We, therefore, collected

ur own gaze data set based on the DeepFashion data set [6] . 1 

eepFashion is a clothes data set consisting of 289,222 images

nnotated with 46 different categories and 10 0 0 attributes. We

sed the top 10 categories 2 and attributes 3 in our data collection.

he training set of DeepFashion was used to train our CNN image

odel for clothes category and attribute prediction; the validation

et was used to train participants for each category and attribute

see below). Finally, the test set was used to build up image col-

ages for which we recorded human gaze data of participants while

earching for specific categories and attributes. In the following, we

escribe our data collection in more detail. 

.1. Participants and apparatus 

We collected data from 14 participants (six females), aged be-

ween 18 and 30 years and with different nationalities. All of them

ad a normal or corrected-to-normal vision. For gaze data collec-

ion we used a stationary Tobii TX300 eye tracker that provides

inocular gaze data at a sampling frequency of 300Hz. A chinrest

as used to stabilize the head position of the participants. an il-

ustration of a sample test environment can be seen in Fig. 2 . 

We calibrated the eye tracker using a standard 9-point calibra-

ion, followed by a validation of eye tracker accuracy. For gaze
1 Data set is Available at GazePooling 
2 Categories: dress, tee, blouse, shorts, tank, skirt, cardigan, sweater, jacket, jean. 
3 Attributes: print, floral, lace, knit, sleeve, maxi, shirt, denim, striped, chiffon. 

a  

m  

s  

d  
ata processing we used the Tobii software with the parameters

or fixation detection left at their defaults (fixation duration: 60ms,

he maximum time between fixations: 75ms). Image collages were

hown on a 30-inch screen with a resolution of 2560x1600 pixels. 

.2. Procedure 

We first trained participants by showing them exemplary im-

ges of all categories and attributes in a game like sessions to

amiliarize themselves with the categories and attributes. We did

ot collect any gaze data at this stage. For each category and at-

ribute, we then generated 10 image collages, each containing 20

mages. Each target category or attribute appeared twice in each

ollage at a random location (see Fig. 3 for an example). Partici-

ants were then asked to search for ten different categories and

ttributes on these image collages (see Fig. 3 ) while their gaze was

eing tracked. We stress again that we did not show participants a

pecific target instance of a category or attribute that they should

earch for. Instead, we only instructed them to find a matching im-

ge from a certain category, i.e “dress”, or with a certain attribute,

.e “floral”. Consequently, the search session guided by the mental

mage of participants from the specific category or attributes. Par-

icipants had a maximum of 10 s to find the asked target category

r attribute in the collage that was shown full-screen. As soon as

articipants found a matching target, they were asked to press a

ey. Afterward, they were asked whether they had found a match-

ng target and how difficult the search had been. This procedure

as repeated ten times for ten different categories or attributes,

esulting in a total of 100 search tasks. 

. Integration of gaze into deep learning architectures 

In this work, we propose a modular and effective integration

cheme which facilitates current deep architectures with gaze data.

e address this task by introducing the Gaze Pooling Layer(GPL)

hat combines CNN architectures with gaze data in a weighting

echanism. We further show the application of our Gaze Pooling

ayer in two different frameworks, for prediction and decoding of

he visual search targets of users from their gaze data during visual

earch. The proposed layer is parameter-free and does not need

ny gaze data to be trained on. In the following, we describe the

ajor components of our method in detail: the Gaze Pooling Layer,

earch target prediction and search target decoder. Finally, we also

iscuss different integration schemes across multiple images that

https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/gaze-based-human-computer-interaction/predicting-the-category-and-attributes-of-visual-search-targets-using-deep-gaze-pooling/
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Fig. 3. Sample image collages used for data collection: Attributes (top), Categories 

(bottom). Participants were asked to find different clothing attributes and categories 

within these collages. 
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allow us to utilize gaze information obtained from collages. As a

mean of inspecting the internal representation of our Gaze Pooling

Layer, we propose Attended Class Activation Maps (ACAM). 

4.1. Image encoder 

We build on the recent success of deep learning and use a

convolutional neural network (CNN) to encode image information

[52,53] . Given a raw image I , a CNN is used to extract image fea-

ture map F ( I ). 

F ( I ) = CNN ( I ) (1)

The end-to-end training properties of these networks allows us to

obtain domain-specific features. In our case, the network will be

trained with data and labels relevant to the fashion domain. As we

are interested in combining spatial gaze features with the image

features, we use features F ( I ) of the last convolutional layer that

still has a spatial resolution. This results in a task-dependent rep-

resentation with spatial resolution. Also, to gain a higher spatial

resolution we used the same architecture as describe in [54] . We

use their VGGnet-based model where layers after conv5-3 are re-

moved to gain a resolution of 14 × 14. 

4.2. Human gaze encoding 

Given a target category or attributes T , participant P ∈ P look

at image I and performs fixations G(I,P) = (x i , y i ) , i = 1 , ..., N in

screen coordinates. We aggregate these fixations into fixation den-

sity maps FDM ( G ) that captures the spatial density of fixations over

the full image. Therefore, we represent the fixation density map

FDM ( g ) for a single fixation g ∈ G ( I, P ) by a Gaussian: 

F DM(g) = N (g, σfix ) , (2)
entered at the coordinates of the fixation, with a fixed stan-

ard deviation σ fix – the only parameter of our representation.

he fixation density map for all fixations FDM ( G ) is obtained by

oordinate-wise summation: 

 DM(G ) = 

∑ 

g∈ G 
F DM(g) (3)

his corresponds to an average pooling integration. We also pro-

ose a max-pooling version as follows: 

 DM(G ) = max 
g∈ G 

F DM(g) (4)

.3. Deep Gaze Pooling Layer 

During visual search, users pay attention more to image regions

ith local similarities to the target in mind. To extract these lo-

al regions from the rest of the image features, we introduced the

aze Pooling Layer. Via this layer, we can ignore regions in which

sers did not pay attention to, and only encode image features in

he interest of users. Hence, these features are not generic image

eatures, rather represents the target of visual search in mind of

he user. 

For this aim, we combine the visual features F ( I ) with fixation

ensity map FDM ( G ) in a Gaze Pooling Layer. The integration is

erformed by element-wise multiplication between both to obtain

 gaze-weighted feature map (GWFM) 

WFM (I, G ) = F (I) � F DM(G ) . (5)

n spirit of [54] , we then perform Global Average Pooling (GAP) on

ach feature channel separately in order to yield a vector-valued

eature representation. 

AP GWFM 

(I, G ) = 

∑ 

x,y 

GWFM (I, G ) (6)

.4. Visual search target inference 

The resulted features from the Gaze Pooling Layer encode infor-

ation about the visual search target of the users. These features

an be used to predict the search target of users. For predicting

he visual search targets, we add a fully connected and a soft-max

ayer after the Gaze Pooling Layer. 

p(C| I, G ) = softmax (W GAP GWFM 

(I, G ) + b) , (7)

here W are the learned weights and b is the bias and C are the

onsidered classes. The classes represent either categories or at-

ributes depending on the experiment and we decide for the class

ith the highest class posterior. 

In our study, a stimulus is a collage with a set of images I i ∈ I .

uring the search task, participants fixate on multiple images in

he collage, which generates fixations G i ∈ G for each image I i .

ence, we need a mechanism to aggregate information across im-

ges. To do this, we propose a weighted average scheme of the

omputed posteriors per image: 

p(C| I , G ) = 

∑ 

i 

d i × p(C| I i , G i ) . (8)

e consider for the weights d i the total fixation duration of all fix-

tions on image I i as well as fixed d i which is assumed to be one.

he fixation duration d i is normalized by total fixation duration of

ll the fixations on collage C . 

In order to obtain the CNN features maps, we follow [54] and

uild on the recent VGGnet-GAP model. For our categorization ex-

eriments, we fine-tune on a 10 class classification problem on the

eepFashion data set [6] . For attribute prediction, we fine-tune a

odel with 10 times 2-way classification in the final layer. We

sed Caffe to train our models using a NVIDIA Tesla 2 × K40m
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Fig. 4. Overview of our approach. Given a search task (e.g. “Find a blouse”), participants fixate on multiple images in an image collage. Each fixated image is encoded into 

multiple spatial features using a pre-trained CNN. The proposed Gaze Pooling Layer combines visual features and fixation density maps in a feature-weighting scheme. The 

output is a prediction of the category or attributes of the search target. To obtain one final prediction over image collages, we integrate the class posteriors across all fixated 

images using average pooling. 

Fig. 5. The proposed Gaze Pooling Layer combines fixation density maps with CNN feature maps via a spatial re-weighting (top row). Attended class activation maps are 

shown in the bottom row, in which the predicted class scores are mapped back to the previous convolutional layer. The attended class activation maps highlight the class- 

specific discriminative image regions. 
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n  
2GB GPU card. We perform a validation of the VGGnet image clas-

ification performance model in the same setting as [6] and ob-

ained comparable results ( ± 5%) for category and attribute classi-

cation. To ensure that the images and collages are not informative

f the category or attribute search tasks, we have performed a san-

ty check by using only the CNN prediction on the images of our

ollages. The resulting performance is at chance level, which vali-

ates our setup as search task information cannot be derived from

he images or collages and therefore can only come from the gaze

ata. 

.5. Visual search target decoding 

In order to generate visual search targets of users, we employ a

onditional Variational Auto-Encoder (CVAE) [11] . The conditional

ariational autoencoder is trained gaze free, for the generation of

mages of different clothing categories using the deep fashion data

et. However, at test time, the decoder is using the gaze weighted

eature maps GAP GWFM 

(I, G ) , to decode visual search target of users

s illustrated in Fig. 4 . Given the posteriors p ( c | I, G ), our goal is to

ample the visual search target ST of the target category c from 

 ( ST | I, G ) = 

∑ 

c 

P ( ST | c) P (c| I, G ) , (9) 

n the following, we explain the encoder and search target decoder.

.6. Category-conditioned image generation model 

In contrast to traditional Variational Auto Encoder(VAE), where

e have no control on the data generation process, Conditional

ariational Auto-Encoder (CVAE) can generate specific data. 

Given the category vector c ∈ R 

d c and the latent variable z ∈
 

d z , CVAE is a generative model p θ ( I | c, z ), which generates im-

ge I ∈ R 

d I . The generated image I , is conditioned on the categori-
al information c and the randomly sampled latent variable z from

rior distribution p ( z ). In Conditional Variational Auto-Encoder, the

uxiliary distribution q φ( z | I, c ) is introduced to approximate the

rue posterior p θ ( z | I, c ). The goal of learning process is to find the

est parameter θ which maximizes the lower bound of the log-

ikelihood log p θ ( I | c ). Hence the conditional log-likelihood is 

og p θ (I| c) = KL (q φ(z| I, c) || p θ (z| I, c)) + L CVAE (I, c, ; θ, φ) , (10)

here the variational lower bound 

 CVAE (I, c, ; θ, φ) 

= −KL (q φ(z| I, c) || p θ (z)) + E q φ (z| c,I) [ log p θ (I| c, z)] (11) 

s maximized for learning the model parameter. We assume that

he prior p θ ( z ) follows a isotropic multivariate Gaussian distri-

ution. The conditional distributions p θ ( I | c, z ) and q φ( z | I, c ) are

ulti-variate Gaussian distribution with mean and variance of

 

(
μθ (I, c) , diag(σ 2 

θ
(z, c)) 

)
and N 

(
μφ(I, c) , diag(σ 2 

φ
(I, c)) 

)
. 

The recognition model here is q φ( z | I, c ) and the generation

odel is the conditional distribution p θ ( I | c, z ). During training the

rst term KL (q φ(z| I, c) || p θ (z)) acts as a regularisation term that

inimises the gap between the prior p θ ( z ) and the proposal dis-

ribution q φ( z | I, c ). To generate gaze conditioned image, we replace

he recognition network with a VGGNet-16-GAP network, as ex-

lained in Section 4.4 during the test time. The Z is sampled from

sotropic Gaussian distribution. 

The CAVE, have two convolutional neural networks for recogni-

ion and generation. The encoder network consists of 5 convolu-

ion layers, followed by 2 fully-connected layers (convolution lay-

rs have 64, 128, 256, 256 and 1024 channels with filter size of

 × 5, 5 × 5, 3 × 3, 3 × 3 and 4 × 4, respectively; the two fully-

onnected layers have 1024 and 192 neurons). The category stream

s merged with the image stream at the end of the recognition

etwork. The decoder network consists of 2 fully-connected layers,
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Fig. 6. This image gives an overview of search target decoding. The user is searching for a category “Jean”, the gaze data is recorded during the search task. We encode the 

gaze information into a semantic representation p ( C | I, F ). The representation is used as condition over the learned latent space to decode the gaze into visualizations of the 

categorical search target. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Evaluation of global vs. local gaze pooling with and without weighting 

based on the fixation duration . 

Global vs. ———– Category ——– Attribute 

Local Top1 Top2 Top3 Accuracy 

Global 31% ± 5 48% ± 8 62% ± 8 20% ± 1 

Local 49% ± 7 68% ± 6 78% ± 6 26 % ± 1 

Global � 52% ± 6 68% ± 6 78% ± 6 25% ± 1 

Local � 57% ± 8 74% ± 7 84% ± 4 34% ± 1 
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followed by 5 convolution layers with 2-by-2 upsampling (fully-

connected layers have 256 and 8 × 8 × 256 neurons; the convo-

lution layers have 256, 256, 128, 64 and 3 channels with filter size

of 3 × 3, 5 × 5, 5 × 5,5 × 5 and 5 × 5. Furthermore, we

train a classifier (VGGNet-16-GAPto get class posterior from gaze

data p(C| I , F ) . This posterior is used in the category stream of the

encoder to generate the search target of our users. 

Both networks are trained over the top 10 categories of Deep-

fashion. We use the same train, test and validation split as pro-

posed in the deep-fashion dataset. The CVAE is trained to generate

images of clothing, conditioned on the top ten categories of the

deep fashion data set. We used Adam for stochastic optimization.

For the CAVE network, we used a learning rate of 0.0 0 03 and a

mini-batch of size 32. Torch is used to train the CVAE using an

NVIDIA Tesla 2 × K40m 12GB GPU card. 

4.7. Attended class activation maps 

To inspect the internal representation of our Gaze Pooling Layer,

we propose the attended class activation map visualization. It

highlights discriminative image regions for a hypothesized search

target based on CNN features combined with the weights from the

gaze data. In this vein, it shares similarities to the CAM of [54] but

incorporates the gaze information as an attention scheme. The key

idea is to delay the average pooling, which allows us to show spa-

tial maps as also illustrated in In more detail, our network consists

of several convolutional layers which the features of the last con-

volutional layer is weighted by our fixation density map (GWFM).

We do global average pooling over the GWFM and use those fea-

tures for a fully connected layer to get the user attended categories

or attributes. Given that our features maps are weighted by gaze

data of users, it represents their attended classes. We can identify

the importance of the image region for attended categories by pro-

jecting back the weights of the output layer onto a gaze-weighted

convolutional feature map, which we call Attended Class Activation

Map (ACAM): 

ACAM c (x, y ) = 

∑ 

k 

w 

c 
k GW F M k (I, G ) (12)

where w 

c 
k 

indicates the importance GWFM k ( I, G ) of unit k for class

c. The procedure for generating the class activation map is shown

in. 

5. Evaluation 

To evaluate our method for search target prediction of cate-

gories and attributes, we performed a series of experiments. We

first evaluated the effectiveness of our Gaze Pooling Layer, the
ffect of using a local vs global representation, and of using a

eighting by fixation duration. We then evaluated the gaze encod-

ng that encompasses the pooling scheme of the individual fixa-

ion as well as the σfix parameter to represent a single fixation.

inally, we evaluated the robustness of our method to noise in the

ye-tracking data, which sheds light on different possible deploy-

ent scenarios and hardware that our approach is amenable to.

dditionally, we provide a visualization of the internal representa-

ions in the Gaze Pooling Layer. Across the results, we present Top-

 accuracies denoting correct predictions if the correct answer is

mong the top N predictions. 

.1. Evaluation of the Gaze Pooling Layer 

Fixation information enters our method in two places: The fix-

tion density maps in the Gaze Pooling Layer( Section 4.3 ) as well

s the weighted average across images in the form of fixation du-

ation (see Eq. (8) and Fig. 6 ). To evaluate the effectiveness of our

aze Pooling Layer, we evaluate two conditions: “local ” makes full

se of the gaze data and generates fixation density maps using the

xation location as described in our method section. ‘ global ” also

enerates a fixation density map, but does not use the fixation lo-

ation information and therefore generates for each fixation a uni-

orm weight across the whole fixated image. Besides, we evaluate

wo more conditions, where we either used the fixation duration

s a weight to the average class posterior of each fixated image

see Eq. (8) ) or ignore the duration. 

Table 1 shows the result of all 4 combinations of these con-

itions, with the first column denoting if local or global informa-

ion was used and the second column whether fixation duration

as used. Absolute performance of our best model using local in-

ormation and fixation duration was 57%, 74%, and 84% on top1-3

ccuracy respectively, for the categorization task and 34% accuracy

or attributes. The results show a consistent improvement (16 to

8 pp for categories, 6 pp for attributes) across all measures and

asks going from a global to a local representation (first to the sec-

nd row). Adding the weighting by fixation duration yields another
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Table 2 

Evaluation of different fixation pooling strategies using average 

or max pooling. 

Fixation ———– Category ——– Attribute 

Pooling Top1 Top2 Top3 Accuracy 

Max 54% ± 8 73% ± 9 83% ± 6 32% ± 1 

Average 57% ± 8 74% ± 7 84% ± 4 34% ± 1 

Table 3 

Evaluation of different gaze encoding schemes using dif- 

ferent per-fixation σfix . 

σfix → 1 1.2 1.4 1.6 1.8 2 

Top1 55% 54% 56% 56% 57% 57% 

Top2 74% 74% 74% 74% 74% 75% 

Top3 83% 84% 84% 85% 85% 84% 
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Fig. 7. Accuracy for different amounts of noise added to the eye tracking data. Our 

method is robust to this error which suggests that it can also be used with head- 

mounted eye trackers or learning-based methods that leverage RGB cameras inte- 

grated into phones, laptops, or public displays. 

Fig. 8. Attended class activation maps of top 3 predictions in local and global 

method for a given image. Participants were searching for target category “Blouse”. 

The maps shows the discriminative image regions used for for this search task. 
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onsistent improvement for both local and global approach (an-

ther 6 to 5 pp for categories). Our best method improves overall

y 22 to 26 pp on the categorization task and 14 pp on the at-

ributes. The global method without fixation duration (first row) is

n a spirit similar to [4] – although the specific application differs.

ll further experiments will consider our best model (last row) as

he reference and justify the parameter choices (average pooling,

igma fix ) by varying each parameter one by one. 

.2. Evaluation of the gaze encoding 

We then evaluated the gaze encoding that takes individual fix-

tions as input and produces a fixation density map. We first eval-

ated the representation of a single fixation that depends on the

arameter σfix , followed by the pooling scheme that combines mul-

iple fixations into fixation density maps. 

Effects of fixation representation parameter f σ . The parameter σfix 

ontrols the spatial extend of a single fixation in the fixation den-

ity maps as described in Section 4 . We determined an appropriate

etting of this parameter to be σfix = 1 . 6 in a pilot study to roughly

atch the eye tracker accuracy and analyzed here the influence

n the overall performance by varying this parameter in a sensible

ange (given eye tracker accuracy and coarseness of feature map)

rom 1 to 2 as shown in Table 3 . As can be seen from the Table, our

ethod is largely insensitive to the investigated range of reason-

ble choices of this parameter and our choice of 1.6 is on average

 valid choice within that range. 

Fixation pooling strategies. We evaluated two options for how to

ntegrate single fixations into a fixation density map: Either us-

ng average or max pooling. The results are shown in Table 2 . As

he Table shows, while both options perform well, average pooling

onsistently improves over the max pooling option. 

.3. Noise robustness analysis 

Several factors such as size and resolution of displays, the visual

ngle at which the stimuli are presented to the viewers could in-

rease gaze estimation error. However, it remains difficult to study

hose systematically and exhaustively. Therefore, we decided to

tudy noise as it gives some indication of robustness across a range

f causes related to the sensing process. 

While our gaze data is recorded with a highly-accurate station-

ry eye tracker, there are different modalities and types of eye

rackers available. One key characteristic in which they differ is

he error at which they can record gaze data – typically mea-

ured in degrees of visual angle. While our controlled setup pro-

ides us with an accuracy of about 0.7 degrees of error, state-of-

he-art eye trackers based on webcams, tablets or integrated into
lasses can have up to 4 degrees depending also on the deploy-

ent scenario [55] . Therefore, we finally investigated the robust-

ess of our approach w.r.t. different levels of (simulated) noise in

he eye tracker. To this end, we sampled noise from a normal dis-

ribution with σ = 1 , 3 , 5 . This corresponds roughly to 60, 120 and

00 pixels and 1.2, 2.5 and 4.2 degrees of visual angles and hence

overs a realistic range of errors. The results of this evaluation are

hown in Fig. 7 . As can be seen, our method is quite robust to

oise with only a drop of 5 to 10pp for Top3 to Top1 accuracy,

espectively – even at the highest noise level. In particular, all the

esults are consistently above the performance of the correspond-

ng global methods shown as dashed lines in the plot. 

.4. Visualization and analysis of Gaze Pooling Layer on single images

We provide further insights into the working of our Gaze Pool-

ng Layer by showing visual examples of the attended class activa-

ion maps, associated fixation density map and search target pre-

iction results. While the quantitative evaluation was conducted

n full collages, this is impracticable for inspection. Therefore, we

how in the following visualizations and analysis of single images.

redictions. Fig. 12 shows results for the categorization task and

ig. 13 for the attribute task. Each of these figures shows the out-

ut of the “global” method that uses uniform fixation density map

s well as the “local” method that makes full use of the gaze data.

e observe that for the “local” method a relevant part of the im-

ges is fixated on which in turn leads to correct prediction of the

ntended search task. 

Attended Class Activation Map (ACAM) Visualization. Fig. 8 shows

he attended class activation map (ACAM) of top 3 predictions, for

local” as well as “global” approach. The “global” method exploits
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Fig. 9. Attended class activation maps of top1 prediction in local and global method 

for a single fixated image. Participants were searching for the given category. The 

maps show the discriminative image regions used for this search task 

Fig. 10. Attended class activation maps of top1 prediction in the local and global 

method for a single fixated image. Participants were searching for the given at- 

tribute. The maps show the discriminative image regions used for this search task 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Image collage with fixations of a participant searching for “Blouse” and 

“Lace”. The right image shows the ACAM of each fixated image in the collage. The 

last column represents the top 1 prediction for a global and local method without 

and with fixation durations. 
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4 Further illustration of prediction over time could be seen in this video 
that this image was fixed on - but does not exploit the location

information of the fixations. Therefore it reduces in the case of a

single image to a standard CAM. E.g. the lower part of the image is

activated for “skirt”, and the upper part is activated for “Tee”. One

can see that highlighted regions vary across the predicted class.

The first row shows the ACAM for the “local” method. It can be

seen how the local weighting due to the fixation is selective to the

relevant features of the search target, e.g. eliminating the “skirt”

responses and retaining the “blouse” responses. 

Figs. 9 and 10 , shows the attended class activation map (ACAM)

of top 1 predictions of the fixated images, for “local” and “global”

approach. The left column represents the image and the task of the

user, the second column shows fixation density maps of the user
earching for the given task and the last two columns are ACAM

or the local and global method. 

Search target prediction over image collages. In Fig. 11 presents

xation data of one participant searching for category “Blouse” and

ttribute “Lace”. The posterior of all fixated images are average to

et one final prediction overall fixated images. For each fixated im-

ge we show the attended class activation map (ACAM) and the

esult of the global and local method with and without fixation

uration. 

Performance over time. Fig. 16 , illustrate the effect of informa-

ion accumulation over time. The number of fixations varies across

articipants. Hence, we measure the accuracy of our method using

ifferent number of fixations. As shown in Fig. 16 , after 8 fixations

he prediction accuracy of our model does not improve so much. 4 

.5. Evaluation of the search target decoding 

We evaluate our approach on our gaze dataset. Besides quali-

ative results, we show two user studies. One measures the suc-

ess in reconstructing meaningful visual representations of visual

earch targets and the second highlights the importance of a gaze

ncoder that respects localized information. 

Qualitative results of search target decoding. Figs. 14 , 15 and 17

how qualitative results of our approach. Noise is inherent in gaze

ncoding. To cope with this challenge, we try different pruning

trategies to suppress weak activation in the semantic represen-

ation c . Specifically, we tried four scenarios to decode the visual

earch target from the gaze. In the first case, we used plain poste-

ior as a conditioned vector. In the remaining cases, we used only

he top 1 to top 3 highest activated classes in the posterior as a

ondition vector for CVAE. All other probabilities are set to zero,

nd the posterior is re-normalized afterward. 

Using directly the posterior of the CNN with the gaze pooling

ayer causes images that contain several categories rather than the

ntended visual search target. As shown in Fig. 14 , the image recon-

tructed from unaltered posteriors (first row) is more blurry and

oes not seem to contain one specific category (e.g. Z1 looks like a

louse, Z6 is a dress and Z9 is a skirt). 

Images from top2 and top1 appear to be more focused on the

ntended category. Using top2 posteriors generates images which

re a mixture between the two posteriors. One can see more de-

ails in top2, which is a composition between dress and skirt,

https://www.youtube.com/watch?v=wPeyK5jkjUU
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Fig. 12. Example category responses of the local and global method. Green means correct and red means wrong target prediction (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.). 

Fig. 13. Example attribute responses of the local and global methods. Green means correct and red means wrong target prediction (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.). 

Fig. 14. Using all posteriors gives images that contain several categories. Using the only top3 to top1 posterior gives images that contain the intended categories. As we 

move from posteriors to top1, the decoded image is more localized and contains fewer classes. Top3 images have a full-body part, as we move to top 1, can see only lower 

body part that contains a skirt. 
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Fig. 15. Top3 and top2 were able to capture the right category; the decoded images contain the target “Tank”. However, due to the wrong prediction for top1 resulted 

decoding looks like a “Dress”. 

Fig. 16. Performance of our best model(local+fixation duration) using increasing 

number of fixations. The top1-3 category accuracy is reported. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

All of the users, preferred the decoding using local information over 

global method. This indicates the importance of local information 

on decoding the users’ intents. 

P1 P2 P3 P4 P5 P6 P7 

Local 80% 70% 60% 70% 70% 60% 50% 

Global 20% 30% 40% 30% 30% 40% 50% 
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whereas the top1 only contains a skirt. Images from top1 are

sharper and mostly contain one category. However, if the predicted

category is wrong, we can not decode the intended category(last

row of Fig. 15 ). Also Table 2 showed strong recognition perfor-

mance for top 2 and top 3 classification performance. Hence, us-

ing the top2 and top3 is likely to contain information about the

target. This is reflected in better reconstructions for the top2 and

top3 strategies. 

As one can see in Fig. 15 , top1 decoded a dress, although the

intended category was a tank. The intended category is recovered

in the top2 and top3 decodings. 

As top2 results are giving images with preferred search tar-

gets, for further analysis, we choose decoded images from top2.

Fig. 17 shows ten samples for each category using top2 posteriors

based on fixations from one user. Our approach can generate im-

ages of different categories. The model performs better for several

classes, as Jean, Shorts, Skirt, Dress, Tank, Sweater and Tee. Images

from the cardigan and jacket are more similar to each other, al-

though there are still differences in the appearance. In particular,

images depicting the search target cardigan appear more elongated

compared to those for jackets. User study I: search target recogni-

tion. To assess the accuracy of the search target reconstruction, we

run a user study. For each participant and category in the study, we

show ten samples from our model. The reconstructions are based

on human fixations from our dataset. The users are asked to pick

one category among ten categories for a given image. The aver-

age accuracy of 19 users across categories was 62%, and the de-

tailed confusion matrix is shown in Table 5 . There are confusion

between cardigan and jacket, also a skirt and blouse with a dress.
ll search targets were recognized significantly above chance (10%).

sers were most confident about jeans, shorts, and dresses. 

User study II: local vs global gaze encoding. In this user study, we

valuated the importance of local gaze information for the decod-

ng of visual search targets. Our full model is denoted as “local”

ere, as it uses the complete gaze information – in particular the

xation location on the image. We compare it to a “global” model

hich uses gaze information – but only to the extent that we

now an image was fixated without knowing the exact location.

his also connects to the analysis performed on the recognition

ask for the gaze pooling layer. We ask how much of a difference

hese approaches make in terms of search target reconstruction. In

his user study, each participant saw two rows of search target re-

onstructions. One row was generated by the local, the other by

he global method ( Fig. 18 . The users were instructed to select the

ow, which matches the best, the given search target category. The

sers selected the local encoding method in 65% of the cases. The

hance level for this experiment is 50% as for each image the par-

icipates do a binary task. Consequently, the gain is 65% / 50% = 13% .

he gain indicates how much performance of users differs from a

andom selection. Also, we performed the Chi-Square Goodness of

it Test to investigate the significance of our result. The null hy-

othesis was that both local and global decoding are equal. The
2 value is 6.914 and P-Value is 0.009. Hence, the result is signif-

cant at p ≤ 0.05 and therefore, local information is key for im-

roved search target reconstruction. Detailed results are shown in

able 4 . 

. Discussion 

In this work, we studied the problem of predicting and de-

oding categories and attributes of search targets from gaze data.

able 1 shows strong performance for both tasks. Our Gaze Pooling

ayer represents a modular and effective integration of visual and

aze feature that is compatible with modern deep learning archi-

ectures. Therefore, we would like to highlight three features that

re of particular practical importance. 
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Fig. 17. Each row is the decoded search target of a user for the given category using only top2 posteriors. Each column is for different samples of z from a normal distribution. 

As one can see the decoded search targets are distinctive from one another and they represent their corresponding categories properly. 

Fig. 18. Example image used in our second user study. For each category, users need to select between local and global decoded target. The local method encodes the gaze 

data using gaze-pooling layer which benefits from user intended local image regions. 
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Table 5 

Confusion Matrix of “Search Target Recognition”. One can see in all of the cases, users were able to recognize the right categories 

above chance level 10%. (Bold number on diagonal corresponds to classification accuracy per class). However, Classes “Blouse”

and “Skirt” are confused with “Dress” (in red). “Jacket” and “Cardigan” (in blue) where the other classes which users tend to be 

more confuse about them. 

SkirtShortsJeanT-ShirtBlouse Cardigan Dress Jacket TanksSweater

Blouse 42% 0%5%0%0%5% 47% 0% 0%0%
21%T-Shirt 74% 0%0%0%5% 0%0% 0%0%

Jean 0%0% 95% 0%0%5% 0%0% 0%0%
Shorts 0%0%0% 95% 0%5% 0%0% 0%0%
Skirt 0%0%0%0% 42% 0% 58% 0% 0%0%
Cardigan 0%0%0%0%0% 37% 0% 58% 0%5%
Dress 5%5%0%0%16%0% 74% 0% 0%0%
Jacket 0%0%0%0%0% 47% 0% 47% 5%0%

16%0%10%0%0%0%0%16%Sweater 58% 0%
Tanks 0%21%5%5%0%0%0%16% 0% 53%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19. Example fixation data of 2 participants (red and green dots) with search 

target attribute = ‘Floral’ on top and category = ‘Cardigan’ below (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.). 
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6.1. Parameter free integration scheme 

First, our proposed integration scheme is parameter-free. We in-

troduce a single parameter σfix but the gaze encoding is only input

to the integration scheme and, also, the method turns out to be

not sensitive to the choice (see experiments in Section 4 ). 

6.2. Training from visual data 

Second, fixing the fixation density maps to uniform maps yields

a deep architecture similar to a GAP network that is well-suited for

various classification tasks. While this no longer addresses the task

of predicting categories and attributes intended by the human in

the loop, it allows us to train the remaining architecture for the

task at hand and on visual data, which is typically easier to obtain

in larger quantities than gaze data. This type of training results in a

domain-specific image encoding as well as a task-specific classifier.

6.3. Training free gaze deployment 

Gaze data is time-consuming to acquire – which makes it rather

incompatible with today’s data-hungry deep learning models. In

our model, however, the fixations density maps computed from

the gaze data can be understood as spatially localized feature im-

portance that is used to weight feature importance in the spatial

image feature maps Fig. 8 . Our results demonstrate that strong per-

formance can be obtained with this re-weighting scheme without

the need to re-train with gaze data. As a result, our approach can

be deployed without any gaze-specific training. This result is sur-

prising, in particular as the visual model on its own is entirely un-

informative without gaze data on the task of search target predic-

tion and decoding(as we have validated in Section 5.1 . We believe

this simplicity of deployment is a critical feature that makes the

use of gaze information in deep learning practical. 

6.4. Biases in mental model of search targets among users 

To illustrate the challenges our Gaze Pooling Layer has to deal

with in terms of the variations in the observed gaze data, we show

example fixation data in Fig. 19 . In each image, fixation data of

two participants (red and green dots) is overlaid over a presented

collage. Although both participants had the same search target

(top: attribute ‘Floral’; bottom: category ‘Cardigan’), we observe a

drastically different fixation behavior. One possible explanation is

that the mental models of the same target category or attribute
an vary widely depending on personal biases [13] . Despite these

trong variations in the gaze information, our Gaze Pooling Layer

llows us to predict the correct answer in all 4 cases. The key to

his success is aggregating relevant local visual feature across all

mages in the collage, that in turn represent one consistent search

arget in terms of categories and attributes. 

.5. Privacy risks and mitigation strategies 

While previous work has already illustrated the richness of in-

ormation contained in gaze data, our work contributes to the ease

f integration, connecting gaze data to powerful deep learning ar-

hitectures as well as showing for the first time reconstruction of

earch targets. We are aware that these techniques will most likely

ead to even more powerful techniques for extraction of seman-
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ic information from gaze data as well as a new quality of the

xtracted information, as visual information can now be recon-

tructed. Hence, we see the necessity to not only raise awareness

f the opportunities, but equally to the risks pertaining to those

ew methods. Recent work has already picked up on this challenge

y protecting privacy related to gaze based inference and wearable

ameras, e.g. using hardware solutions [56] or software/algorithmic

olutions such as differential privacy [57] . 

. Conclusion 

We introduce the first approach to predict and decode the vi-

ual search target of users from their gaze data. This task is very

ifficult as the target only resides in the user mind. Our approach

hat addresses both tasks is facilitated by a novel Gaze Pooling

ayer that integrates gaze and visual data in a modular way. We

alidate our approach for search target prediction in a quantita-

ive experiment as well as two user studies for search target de-

oding, showing that the decoded target leads to human recogniz-

ble visual representations as well as highlighting the importance

f localized gaze information. We like to emphasize that due to the

raining setup, the method remains highly practical and applicable,

s no large scale gaze data had to be collected or used. The key is

ather the utilization of a semantic layer that connects the gaze en-

oder with the image features for prediction and conditional gen-

rative image model. We believe that our modular approach of in-

egrating gaze data into standard deep learning architecture will

urther stimulate and facilitate research in this interesting research

irection. 
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