Gaussian Processes as an Alternative to Polynomial Gaze Estimation Functions
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Abstract

Interpolation-based methods are widely used for gaze estimation
due to their simplicity. In particular, feature-based methods that
map the image eye features to gaze, are very popular. The most
spread regression function used in this kind of method is the poly-
nomial regression. In this paper, we present an alternative regres-
sion function to estimate gaze: the Gaussian regression. We show
how the Gaussian processes can better adapt to the non-linear be-
havior of the eye movement, providing higher gaze estimation ac-
curacies. The Gaussian regression is compared, in a simulated
environment, to the polynomial regression, when using the same
mapping features, the normalized pupil center-corneal reflection
and pupil center-eye corners vectors. This comparison is done for
three different screen sizes. The results show that for larger screens,
where wider gaze angles are required, i.e., the non-linear behavior
of the eye is more present, the outperformance of the Gaussian re-
gression is more evident. Furthermore, we can conclude that, for
both types of regressions, the gaze estimation accuracy increases
for smaller screens, where the eye movements are more linear.
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1 Introduction

Gaze estimation can be defined as the process that infers gaze from
eye image data. The information of where someone is gazing can be
very useful for many applications in the field of psychology, adver-
tising or web design among others. Gaze can also be used to control
a device such as a tablet, a computer or a television. In this case,
the accuracy requirements are very high. There are many research
goals in the eye tracking community and, although it is not always
necessary, high accuracy is a key point for many applications.

Gaze estimation techniques can be classified in model-based and
interpolation-based [Hansen and Ji 2010]. The majority of exist-
ing gaze tracking methods require an explicit procedure for cal-
ibrating the model or regression parameters to fit individual users.
Interpolation- or regression-based methods are widely used for gaze
estimation due to their simplicity. They model the relation between

*e-mail:laura.sesma@unavarra.es

fe-mail:yazhang @lancaster.ac.uk

*h.gellersen @lancaster.ac.uk

$andreas.bulling@acm.org
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. (©) 2016 ACM.
ETRA ’16,, March 14-17, 2016, Charleston, SC, USA
ISBN: 978-1-4503-4125-7/16/03
DOI: http://dx.doi.org/10.1145/2857491.2857509

eye image data and gaze via a regression and they do not require
a calibrated hardware setup. In particular, feature-based methods,
which rely on local features such as pupil centers, eye corners and
reflections, are very popular. The most spread regression function
used in this kind of method is the polynomial regression and the
most common mapping feature that relies on infrared (IR) illumina-
tion is the pupil center-corneal reflection (pc-cr) vector [Cerrolaza
et al. 2012]. When no IR light is present, the pupil/iris center-eye
corners (pc-ec) can be used [Sesma et al. 2012].

Finding an optimal mapping function for gaze estimation is a re-
search objective. Cerrolaza et al. [2012] analyzes a large set of
polynomial functions with different number of terms and degree.
They conclude that neither the use of higher orders or complete
mathematical expressions significantly improves the accuracy of a
gaze tracking system. Blignaut [2013] studies the relationship be-
tween gaze targets and pc-cr vectors to propose derived polynomi-
als that optimize the gaze mapping. Furthermore, more recently,
Blignaut [2014] compares different polynomial functions that ap-
pear in the literature, in terms of gaze estimation accuracy. Accord-
ing to this study, the polynomial function that achieves the highest
accuracy is one proposed by Blignaut [2013].

Polynomial functions are not necessarily the most reasonable to
map gaze due to the spherical surface of the eye. Lately, other
researchers in the field have studied other types of regression for
feature-based gaze estimation such as generalized regression neu-
ral networks [Zhu and Ji 2004], support vector machines [Zhu et al.
2006] and Gaussian regression [Zhang et al. 2014]. The Gaussian
regression in the latter work is merely for horizontal movements.

In this paper, we present an alternative regression function to es-
timate gaze: the Gaussian regression. The Gaussian regression is
compared, in a simulated environment, to the polynomial regression
when using the same mapping functions for three different screens:
a 10-inch tablet, a standard 22-inch monitor and a 40-inch screen.
We show how the Gaussian processes can better adapt to the non-
linear behavior of the eye movement, providing higher gaze esti-
mation accuracies and how the accuracy, in general, increases for
smaller screens, where the eye movements are more linear.

2 Gaussian processes for gaze estimation

A Gaussian process is a statistical distribution, where any finite lin-
ear combination of samples has a joint Gaussian distribution. A
key fact of the Gaussian process is that it can be fully defined by a
mean function and a covariance function [Rasmussen and Williams
2006]. Therefore, when a zero mean can be assumed, the process is
completely specified by estimating the covariance function. A com-
monly used covariance function is the sum of a squared exponential
and independent noise that has the following form:
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where k, is the covariance function for the noisy targets y, x, and
x4 are input vector samples, [ is the characteristic length-scale, o ¢
is the signal variance and o, the noise variance. The last three
parameters are call hyperparameters and they can be optimized by
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Figure 1: Tracking Features.

maximizing the marginal likelihood using the following derivatives:
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where 6 <|l’ 0¢,0,) are the set of hyperparameters to optimize,
a = K™ “yand K is the covariance matrix. Note that as we have
assumed a zero-mean Gaussian process, the output may need to be
centered. Moreover, when multiple inputs, it is important that they
have similar scales.

In the case of gaze estimation, the Gaussian process maps the rela-
tion between the input mapping features and the output point of re-
gard. A Gaussian process for each axis, i.e., vertical and horizontal,
is required. The mapping features are computed using the tracking
features that appear in Figure 1: the pupil center pc, eye corner cen-
ters ec1 and ecs or corneal reflections ¢r1 and crs. Two different
mapping features are evaluated in this work, both two dimensional.
One is the widely used normalized pc-cr vector [Cerrolaza et al.
2012] V1 (’U1w , Uly)i
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where pc, cr1 and cr2 are the image coordinates of the pupil center
and the corneal reflection and ||cr1 — crz|| is the Euclidean dis-
tance between cri1 and cro. And the other one is the normalized
pc-ec [Sesma et al. 2012] va(v2, , v2, ), which does not required IR

light:
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where pc, eci and eco are the image coordinates of the pupil cen-
ter and the eye corners and ||ec1 — ecz|| is the Euclidean distance
between ecy and ecs.

The Gaussian process needs to be characterized to estimate gaze.
For this, the hyperparameters of the covariance function are esti-
mated via a calibration procedure similar to the one required to cal-
ibrate the coefficients of the polynomial regressions. The user looks
at different points from a calibration grid. The eye data obtained
and the known gaze points are used to optimize the hyperparame-
ters. Once the hyperparameters are learned, the covariance function
can be used to predict and estimate gaze. The more training sam-
ples, the more accurate estimates. The GPML toolbox [Rasmussen
and Nickisch 2010] is used for the implementation.

2.1 Comparison to polynomial regressions

The motivation to propose the Gaussian regression for gaze track-
ing is that it can adapt better to the non-linearity behavior of the
eye movement than the polynomial regressions. Although polyno-
mial regressions are the most spread regression functions in feature-
based gaze estimation, we think that Gaussian regressions are an

alternative. In this work, two polynomial regressions are imple-
mented and compared to the Gaussian regression. The complete
order two equation, which is used in many commercial systems and
research prototypes [Morimoto and Mimica 2005], poly 1:
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where PoR, and PoR, are the point of regard in screen coordi-
nates, v, and v, are the normalized vectors and K is the unknown
coefficient matrix. And one proposed by Blignaut [2013], which is
reported to give the highest accuracy for polynomials, poly 2:
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where PoR, and PoR, are the point of regard in screen coordi-
nates, v, and v, are the normalized vectors and Ko - - - K7 and
Kyo - - - Kyg are the unknown coefficients.

Note that there is one polynomial equation for each axis and that,
for comparison purposes, the mapping features used are the same
as the ones used in the Gaussian regression (see Equations 3 and 4).

3 Evaluation Framework

The aim of this work it to evaluate the Gaussian regression as alter-
native to polynomial regression for feature-based gaze estimation.
For this purpose, a study was carried out in a simulated environ-
ment. For the analysis, the eye simulator framework from Béhme
et al. [2008] was used. It consists of a MATLAB library that per-
mits to simulate a complete eye tracking environment. It provides
the pupil and glint positions in the image plane with sub pixel preci-
sion and gives the possibility to add Gaussian noise with zero mean
and certain standard deviation. The work from Bohme et al. [2008]
was enhanced to include the eye corners to be able to obtain the nor-
malized pc-ec vector. It was done in a similar way as in the work
of Sesma et al. [2012]; assuming that the eye corners are fixed for a
certain head position. The distance between corners is 3 ¢m and an
offset of 1 mm is applied to the other axes so that the two corners
are not aligned. For the eye model, the standard parameters of the
simulator are used, such as a 7.98 mm cornea radius and 2 and 6
degrees fovea angles.

Three standard working scenarios are simulated for three different
screens: a 10-inch tablet, a standard 22-inch monitor and a 40-inch
screen. The camera which captures single eye images is the same
for all the three setups, with an image resolution of 1600x1200
pizels and a 1/3” image sensor. Two different camera focal lengths
have been tested: 6 and 35 mm. Furthermore, two evaluations have
been carried out, one considering perfect feature detectors and an-
other adding Gaussian noise with zero mean and std 0.1 pizels to
the feature positions. In general, the user is sitting in front of the eye
tracker. The camera is placed below the monitor and if present, the
infrared light sources are attached to both sides of the screen. The
characteristics of the screen and working distances used for each
of the three different setups can be seen in Table 1. To simulate
a realistic scenario, the user is centered on the screen at different
working distances depending on the screen size. The calibration
procedure consists in gazing at a 4x4 grid on the screen and the



Table 1: Three different setups.

Screen size Screen resolution Working distance

Large screen 40" 1920x1080 mm 80 cm
Monitor 22" 1680x1050 mm 55 em
Tablet 10” 1280x800 mm 30 cm

Table 2: Mean and Std Euclidean gaze estimation errors in
degrees for a simulated user for the test grid when using perfect
feature detectors.

poly 1 poly 2 Gaussian

Screen Method Mean Std Mean Std Mean Std
pe-cr 0.76 030 026 0.13 0.07 0.05
pe-ec 0.82 033 029 0.14 0.09 0.06

pe-cr 038 0.15 0.15 0.07 0.02 0.01

large screen

monitor
pcec 041 0.16 0.6 008 003 0.02
Lablet pe-cr 023 0.09 0.09 0.04 0.01 0.00
pc-ec 025 0.10 0.09 0.04 0.01 001
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Figure 2: Pupil center coordinates when looking at the calibration
points (red) and test points (blue).

same procedure is repeated for testing using an 8x8 grid. The cali-
bration and testing grid are created leaving a 0.05* screen size and
0.06 * screen size offset at the edges of the screen. The camera
captures 30 frames per grid point and the working distances are the
same for both procedures. For the evaluation, the Euclidean gaze
estimation errors gegp for every test point are calculated. Further-
more, the mean and standard deviation of the ge g p are used to have
information about the global behavior of the regression methods.

4 Results

The objective of this work is to proof that Gaussian regressions are
an alternative for feature-based gaze estimation. The gaze estima-
tion errors obtained with the Gaussian regression and two different
polynomial regressions are compared for three setups with three
different screen sizes for the camera focal lengths 6 and 35 mm
when considering perfect and noisy feature positions.

The outperformance of the Gaussian regression can be seen in Ta-
ble 2. The table shows the mean and std ge g p in degrees for a sim-

Table 3: Mean and Std Euclidean gaze estimation errors in
degrees for a simulated user for the test grid when using cam-
era focal lengths 6 and 35 mm and applying a Gaussian noise with
zero mean and std 0.1 pixels to the feature centers.

(a) f=6 mm

poly 1 poly 2 Gaussian

Screen Method Mean Std Mean Std Mean Std
pe-cr 094 021 066 0.14 0.62 0.12
pe-ec 086 030 040 0.11 031 0.05
pe-cr 0.53 0.10 041 0.08 039 0.07
pc-ec 045 0.14 024 0.06 0.19 0.02
pe-cr 030 0.06 022 0.04 021 003
pe-ec 027 0.09 0.13 0.03 0.10 0.01

large screen

monitor

tablet

(b) f=35 mm

poly 1 poly 2 Gaussian

Screen Method Mean Std Mean Std Mean Std
pe-cr 077 030 028 0.13 012 0.03
pe-ec 082 033 029 0.14 010 0.05
pe-cr 039 0.14 0.16 0.06 0.07 0.01
pe-ec 041 0.16 0.16 0.07 0.05 0.02
pe-cr 023 0.09 009 0.04 0.04 001
pc-ec 025 0.10 0.09 0.04 0.03 0.01

large screen

monitor

tablet

ulated user for the test grid for the different setups and regressions
considered when perfect feature detectors are used. In this case, the
focal length used does not affect the gaze estimation errors. The
error differences are higher for the large screen setup because the
non-linear behavior of the eye movement appears when looking at
some parts of the screen. This can be observed in Figure 2, where
the pupil center image coordinates, when looking at the calibration
and testing points of the three different setups, are represented. The
non-linearity is more evident at the top rows, where we can see that
the pupil centers follow a curve. Note how the non-linearity in-
creases at the sides of the screen. For the monitor setup, however,
the non-linearity is not as visible and for the smallest screen, it is
practically nonexistent. Furthermore, in general, we can see in Ta-
ble 2 that the gaze estimation accuracy increases as the screen size
decreases. This is due to the more linear performance of the eye
movements when gazing at smaller screens from a standard work-
ing distance. This is an advantage when estimating gaze with mo-
bile devices such as a tablet or a mobile phone.

The results have shown that the Gaussian regression outperforms
the two evaluated polynomial regressions when perfect feature de-
tectors are considered. It is expected, however, that for noisy feature
positions, the differences between the regressions decrease; these
differences decrease as the error increases. This is demonstrated
with the gaze estimation errors achieved with the two evaluated fo-
cal lengths. The Gaussian error of zero mean and std 0.1 pixels
implies higher errors for the smaller focal length, as the image res-
olution of the eye area is much smaller. Table 3 shows the mean and
std of the gep for a focal length of 6 and 35 mm when noisy data
is considered. The results show how the setup with focal length 6
mm is more affected by the noise, in such a way that the differ-
ences between regressions decreases. In this case, the performance
of the poly 2 and the Gaussian is very similar. However, when the
feature detector’s are very accurate at higher focal lengths, such as
35 mm, the Gaussian regression outperforms the other two poly-
nomial regressions as it happened with perfect feature detectors.

The accuracy of a gaze estimation method cannot only be deter-
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Figure 3: Euclidean gaze estimation error in mm for a simulated
user for the test grid for a large screen and camera focal length 35
mm when using three different regression functions with the nor-
malized pc-cr vector with perfect feature detector’s and with Gaus-
sian noise with zero mean and std 0.1 pixels.

mined by the mean accuracy, as Blignaut [2014] claims. Therefore,
Figure 3 shows the mean gerp in mm for the test grid for a large
screen and focal length 35 mm when using the three different re-
gression methods with the normalized pc-cr vector with perfect fea-
ture detector’s and with Gaussian noise with zero mean and std 0.1
pixzels. We can observe how the error distribution is not uniform
and how the Gaussian regression greatly improves the accuracy of
the polynomial poly 1 and poly 2. However, the performance of
the poly 2 is also very good. The outperformance of poly 2 over
poly 1 was already demonstrated with real data in the work of Blig-
naut [2014]. In this work, the result is validated with simulated data.

5 Conclusions

In this paper, we present an alternative regression function to es-
timate gaze: the Gaussian regression. The Gaussian regression
is compared, in a simulated environment, to the polynomial re-
gression when using the same mapping features for three different
screens: a 10-inch tablet, a standard 22-inch monitor and a 40-inch
screen. The results show that for larger screens, where wider gaze
angles are required, i.e., the non-linear behavior of the eye is more

present, the outperformance of the Gaussian regression is more ev-
ident. However, note that Gaussian processes can be computational
expensive with their computation cost dependent on the input fea-
ture vector’s dimension. Furthermore, we can conclude that, for
both regressions, the gaze estimation accuracy increases for smaller
screens, where the eye movements are more linear. This is an ad-
vantage when using gaze estimation for mobile devices such as a
tablet or a mobile phone. Therefore, the gaze angle range that takes
place, is an important fact to take into account when evaluating and
characterizing gaze estimation algorithms. The next steps in this re-
search will include the evaluation of Gaussian regressions with real
data to validate the promising results that have been obtained within
a simulated environment. Moreover, other variables such as head
movements and number of calibration points are to be explored.
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