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Motivation

e Previous models which predict text eye movement
during reading tasks = rule-based, biased towards the
features and the domain.

e Neural based models fail to accurately predict fixations
across various domains.

e Robust evaluation techniques = lacking as gaze data
collection is expensive.

o [ext saliency to deal with varying semantic contexts for
cognitively motivated machine based understanding.

Methods

e BILSTM with stacked multi-headed self-attention
network 1o learn cross domain gaze patterns

e Binary classification task to predict fixations or
skips for each token in the input sequence.

e Fach token (word) in input sequence has corresponding
abels: O for skip or 1 for fixation.

o \WV2V word embeddings

Data

e [raining: Provo and Geco Corpus = 65547 sentences
(61.8% fixated).

¢ \Val: Provo and Geco Corpus = 7284 sentences (53.6%
fixated).

e Test: MQA-RC Corpus = 1581 sentences (50.1%
fixated).

e Model is trained on combined corpus and tested on
a different out of domain corpus.

Model Architecture
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Evaluation

e Against predictions from two baseline systems: the E-Z

transformer network.

Reader 10 model (rule based system) and our simple
BILSTM network without attention.

e Compare our network against the pertained B

al

e Accuracy to measure predictions against human gaze
data = ratio of correct predictions (compared to gold
standard).

e Normalized Mutual Information to measure similarity of

distribution from

—-/ reader token fixation durations to

humans (closer to 1 = more similarity)
Results
Val Test
EZ 546

BiLSTM 65.1% 54.2%

BiLSTM +-Att  68% 62%

Bert 65.6% 62.8%

Table 1: All Model Accuracy Results

Loss and accuracy over time
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Figure 2: BILSTM with self attention

Figure 1: Mutual information score between E-Z Reader and
humans on test set.

Our model is comparable to BE

RT (pertained on out-of-

domain corpus), resulting in 62% accuracy. The E-Z Reader
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Conclusion

e Successfully trained ¢

ower, yet the distribution of fixation
rations shares similar information (0.6-0.8) observed in the
man data —indicating that the E-Z reader model Is

fixation durations.

assifier to predict reading patterns

Softmax
[; | 1 [ | e Our attention based model = increased performance
[ Transformer Network ] against both baselines. We show comparable performance
| | | | to BERT transformer network.
[ Bidirectional LSTM ] _ ,
I [ } T ® ~uture quk = change task 1o a regression tasT. The
| S——— | model objective will be to predict token level fixation
durations. \We aim to evaluate the distribution of predicted
@ @ @ @ > input durations as well as the token level attention weights
sequence against humans.
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