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HAIFAI: Human-Al Interaction for Mental Face
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We present HAIFAI—a novel two-stage system where humans and Al interact to tackle the challenging task
of reconstructing a visual representation of a face that exists only in a person’s mind. In the first stage,
users iteratively rank images our reconstruction system presents based on their resemblance to a mental
image. These rankings, in turn, allow the system to extract relevant image features, fuse them into a unified
feature vector and use a generative model to produce an initial reconstruction of the mental image. The
second stage leverages an existing face editing method, allowing users to manually refine and further improve
this reconstruction using an easy-to-use slider interface for face shape manipulation. To avoid the need for
tedious human data collection for training the reconstruction system, we introduce a computational user
model of human ranking behaviour. For this, we collected a small face ranking dataset through an online
crowd-sourcing study containing data from 275 participants. We evaluate HAIFAI and an ablated version
in a 12-participant user study and demonstrate that our approach outperforms the previous state of the art
regarding reconstruction quality, usability, perceived workload and reconstruction speed. We further validate
the reconstructions in a subsequent face ranking study with 18 participants and show that HAIFAI achieves a
new state-of-the-art identification rate of 60.6%. These findings represent a significant advancement towards
developing new interactive intelligent systems capable of reliably and effortlessly reconstructing a user’s
mental image.

CCS Concepts: « Human-centered computing — Collaborative interaction; User models; - Computing
methodologies — Reconstruction;

Additional Key Words and Phrases: mental image reconstruction, faces, user modelling, deep learning

ACM Reference format:

Florian Strohm, Mihai Béice, and Andreas Bulling. 2025. HAIFAI: Human-AI Interaction for Mental Face
Reconstruction. ACM Trans. Interact. Intell. Syst. 15, 2, Article 10 (May 2025), 26 pages.
https://doi.org/10.1145/3725891

1 Introduction

Many humans are visual thinkers [2], i.e., they heavily rely on mental imagery in their everyday
life—visual representations of objects, faces or concepts only available in people’s minds. For
visual thinkers, the ability to ‘see’ scenarios, memories or future possibilities is critical for how
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they process information, solve problems or make decisions [35, 40, 51, 60, 72]. The prospect of
visually reconstructing such mental images using computational methods has long fascinated
researchers and has led to substantial research efforts in this area. Mental image reconstruction not
only promises to improve our understanding of the human visual system by analysing how visual
information is stored in the brain. Al systems that can understand human mental processes also
hold significant promise for enhancing human-Al interaction.

Mental image reconstruction as a computational task is profoundly challenging given the com-
plex neural encoding of mental images in the human brain [52]. Prior works have used brain sensing
techniques, such as Electroencephalography (EEG) [5, 14, 68, 101] or Functional Magnetic
Resonance Imaging (fMRI) [3, 13, 24, 47, 56, 66, 67, 69, 84, 87]. These methods, though promising,
are limited by their invasive nature (EEG) or impractical for everyday use due to their cost and
technical complexity (fMRI). Consequently, recent works have instead explored passive monitor-
ing of human gaze for mental image reconstruction. Although gaze has been shown to reflect
cognitive processes, such as visual memory [6], and is thus often referred to as a ‘window into
the mind’, previous works have achieved only limited success in terms of reconstruction quality
[64, 65, 78, 79].

We propose a more practical approach to mental image reconstruction where a human user and
an Al system interactively work together to reconstruct mental images using active user feedback.
While our approach can, by design, be used with all mental images, we specifically focus on
human faces given the importance of face perception, e.g., in social interactions, and given highly
relevant practical applications, such as reconstructing a suspect’s face from a witness’s memory in
criminology. Existing methods for facial composite generation can be categorised into constructive,
holistic and hybrid. Constructive approaches offer extensive catalogues of facial features for users
to choose from, such as different eye, nose and mouth shapes and appearances [11, 18, 42, 45].
The main drawback of constructive approaches is that humans struggle to identify individual
features accurately in isolation and instead seem to recall faces holistically [19]. Consequently,
holistic methods, such as EvoFIT [20], allow users to assemble entire faces iteratively through
evolutionary algorithms. However, guiding a holistic generation can be more challenging than
selecting specific features from a catalogue. Hybrid methods (e.g., CG-GAN [99]) combine both
approaches’ advantages by allowing interactive full-face refinement while maintaining control
over specific facial features. However, current hybrid approaches are limited by slow exploration of
the high-dimensional face appearance space and in terms of user control.

To address these challenges, we introduce HAIFAI (Figure 1)—an interactive mental face recon-
struction system designed to maximise the utility of user feedback without depending on random
exploration. Our method involves users iteratively ranking sets of face images based on their re-
semblance to their mental image. This approach significantly simplifies the users’ tasks compared to
prior methods, such as CG-GAN, which require users to combine various mechanisms to reconstruct
their mental images. Our system then extracts facial appearance information from these rankings
over multiple iterations. This information is integrated using an end-to-end, data-driven model that
predicts a feature vector that encodes likely facial features. Rather than iteratively searching the face
space as done in evolutionary-based algorithms, our system holistically integrates user feedback,
using the available information’s full potential. To visually decode the mental image, HAIFAI uses
a state-of-the-art generative model capable of generating realistic face images [38]. Due to the
impracticality of collecting large amounts of human ranking feedback for training HAIFAI we
propose a computational user model to simulate this process. This model uses a pre-trained face
identification network [15], fine-tuned on a face similarity task with human labels crowd-sourced
from 275 participants via Amazon Mechanical Turk (AMT). This enables the generation of
synthetic human rankings to train our system. In the second stage, we use UP-FacE [77] to allow
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Fig. 1. HAIFAI is an interactive human-Al system designed to reconstruct face images from a user’s mental
image visually. In this system, users iteratively rank auxiliary face images—random face images of the
same age group and sex—based on their perceived visual similarity to the mental image they hold in mind.
This feedback is utilised to extract relevant image features, which are then combined by the Al system to
reconstruct the user’s mental image. Following the initial reconstruction, users can adjust facial features
further using a slider interface to refine the visual reconstruction.

users to further refine the initial reconstruction with an easy-to-use slider interface. Providing an
initial reconstruction based on user rankings that closely align with their mental image facilitates
easier and more efficient subsequent manual editing of the face.

Our work makes the following contributions:

(1) We propose HAIFAI, a two-stage interactive human-Al mental face image reconstruction
system. First, our novel method integrates explicit user ranking and reconstructs an ini-
tial image. Second, UP-FacE enables fine-tuned control over the facial features of the face
reconstruction.

(2) We introduce a computational user model for ranking, trained on a novel crowd-sourced
dataset of human face ranking information. This allows us to generate the data required for
training the first stage of HAIFAL

(3) We demonstrate the effectiveness of HAIFAI through evaluations in two user studies, high-
lighting improvements in usability, reconstruction speed and quality over state-of-the-art
methods. Additionally, our system achieves a new state-of-the-art performance for deep
learning-based techniques in human identification rates, which is particularly significant for
critical applications such as forensics.

2 Related Work

Our work is related to previous works on mental face reconstruction using (1) implicit and (2)
explicit user feedback, as well as (3) face editing.

2.1 Mental Face Reconstruction with Implicit User Feedback

Prior research on reconstructing faces using implicit user feedback mechanisms has predominantly
relied on EEG, fMRI or gaze data. Pioneering work in fMRI-based face reconstruction by Cowen
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et al. [12] involved mapping fMRI signals to principal components of facial structures, also known
as Eigenfaces, and reconstructing faces through linear combinations of these components. Nestor
et al. [54] have developed a method to infer a facial feature space directly from fMRI data. They
employed an SVM to distinguish face identities based on fMRI responses and created template faces
for each axis within the derived feature space. These templates were then used to reconstruct faces
from fMRI signals through interpolation. This methodology was later adapted by Nemrodov et al.
[53] for EEG-based mental face reconstruction. A different approach was introduced by VanRullen
and Reddy [87], who used a VAE-GAN architecture to encode facial images into a low-dimensional
latent space. They then mapped fMRI responses to this latent space using a simple regression model,
allowing for face reconstruction via the VAE-GAN decoder. Remarkably, they could reconstruct
faces from fMRI responses even when participants merely thought of a face without visual stimuli.
Building on this, Dado et al. [13] have recorded fMRI responses to synthetic faces produced by
a pre-trained PGGAN [36]. Similar to VanRullen and Reddy [87], they used linear regression to
map fMRI data to the GAN’s latent space for face reconstruction. Recent works have used diffusion
models as powerful image generation backbones, improving image reconstruction quality. This is
accomplished either by mapping the fMRI response onto the latent space of the model [66, 84] or by
refining an initial reconstruction from a variational autoencoder [56]. While all of these fMRI and
EEG-based methods have demonstrated potential, they are also all limited by their invasiveness,
high costs and the challenge of generalising models to unseen users as the relevant brain regions
differ in size and neural activity.

To address the limitations of these invasive techniques, Strohm et al. [78] have introduced a
gaze-based method for mental face reconstruction. In that study, participants were asked to look at
various faces and their gaze patterns were analysed to predict relevant facial features. These features
were then combined using a pre-trained decoder to generate mental images. Although less invasive
and costly, this first method required prior knowledge of the target face, which is prohibitive
for most practical applications. They later developed an improved approach that eliminated this
requirement but still relied on a controlled environment of human-like faces and accurate gaze
data [79]. Given the challenges of mental face reconstruction using implicit feedback, we propose
methods that use explicit feedback instead. Our methods operate in a less constrained domain of
real faces and significantly improve reconstruction quality and, thus, practical usefulness.

2.2 Mental Face Reconstruction with Explicit User Feedback

A large body of work has explored the reconstruction of mental images through the use of explicit
feedback mechanisms, such as user selection, ranking and manual editing. Early systems for face
creation were based on the constructive paradigm, allowing users to select individual facial features
from extensive template catalogues [11, 18, 42, 45]. However, such methods were constrained by
the holistic nature of human face perception, as individuals struggle to identify isolated features
accurately [19]. To address this limitation, Frowd et al. [20] have introduced the popular EvoFIT
system that allows for holistic face interpolation within the Eigenface space: Users iteratively select
faces that resemble their mental image, and the system generates new faces based on the selected
Eigenfaces using an evolutionary algorithm. A similar approach has been proposed by Gibson et al.
[22] with added functionality for adjusting for age and facial details, such as wrinkles. Further
advances in this field included the deep interactive evolution method by Bontrager et al. [4], which
applied an evolutionary algorithm in the latent space of a pre-trained GAN to enhance image
quality, and Xu et al. [95] used a GAN conditioned on facial landmarks and iteratively refined the
landmarks through user feedback to improve reconstruction quality. Zaltron et al. [99] introduced
CG-GAN, which integrates a holistic evolutionary algorithm with constructive functionalities. This
approach allows users to modify faces along identified axes within the GAN’s latent space using
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binary face labels (e.g., glasses, beard). Lastly, Chiu et al. [9] have proposed a method to explore 1D
subspaces of a pre-trained GAN and modify faces using sliders until the desired face was obtained.
Our method fundamentally differs in that it learns to interpret user feedback through an end-to-end
training process, bypassing the need for traditional evolutionary algorithms or random exploration
strategies. This approach enables our system to holistically integrate user feedback, leveraging the
contained information more effectively. As a result, we achieved improved reconstructed image
quality and reduced reconstruction times.

2.3 Digital Face Editing

Utilising prior work in digital face editing, the second stage of HAIFAI allows users to perform
additional manual face edits after the initial reconstruction was obtained. Digital face editing is a
challenging but well-established task in computer vision that has received increasing attention,
particularly in recent years. Related methods have typically used generative models that can produce
high-quality facial images from a latent vector encoding facial features. Face editing is performed
by manipulating these corresponding latent vectors. There are several distinct classes of methods,
including unsupervised methods, mask-based methods, text-based methods, 3D-based methods
and attribute-based approaches. Unsupervised face editing methods decompose generative models’
latent space or weights to uncover semantic editing dimensions. GANSpace [27] uses PCA on the
latent space, while Shen et al. [71] have decomposed generator weights, and Niu et al. [55] have
refined semantic directions. Although these methods do not require labelled data, they are limited in
their ability to uncover meaningful editing dimensions in the latent space and often exhibit higher
entanglement with other features. This entanglement can lead to unwanted modifications in other
facial features. DragGAN [57] allows manual adjustment of facial landmarks, demanding significant
user effort and unsuitability for automation. Mask-based techniques condition generative models on
face masks for control, such as sketch-based inpainting [7, 8, 61] or mask manipulation edits [23, 46,
48, 74, 81, 82]. These methods, however, require skill and effort to modify the segmentation masks
properly. Text-based face editing methods combine mask techniques with text-guided edits [33,
93], such as by integrating generators with the CLIP encoder [59] or by allowing localised edits and
broader text prompts [31, 80]. While text-based methods offer a more user-friendly interface and
high-level control over many aspects of a face, they lack fine-grained editing precision. 3D-based
methods translate a 3D face model to a real image [16, 43, 50, 85, 86] and are great for novel-view
synthesis, lighting manipulation or transferring expressions. However, semantic face shape editing
necessitates significant 3D modelling efforts. Finally, early attribute-based methods have offered
binary control over pre-defined face attributes, but this approach often resulted in unintended
changes [10, 25, 49, 94, 96, 100]. Later methods have used attention mechanisms and classifiers
for localised edits [21, 29, 30, 44, 83, 91, 100] or SVMs for smooth manipulation [26, 70]. Other
research has focused on discovering directions in a generator’s latent space for plausible edits [1,
32,39, 92, 97, 98]. Strohm et al. [77] have recently proposed UP-FacE—a method that uses landmark
annotations to find such editing directions in latent space. UP-FacE offers user-predictable and
fine-grained control over various shape-based facial features, including the eyebrows, eyes, nose
and mouth. These features have been demonstrated to be crucial for face recognition [73].

3 Interactive Mental Face Reconstruction

The objective of mental face reconstruction is to create a visual representation, fec, of a mental face
image f, only present in a person’s mind. The goal is to generate f.. such that it resembles the

. . . . id .
same person identity (id) as best as possible: fiec = fon. Our approach for mental face reconstruction
involves a two-step process: First, a human user and our system collaborate to iteratively generate
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a face reconstruction based on the user’s explicit ranking feedback. In a second step, if desired,
the user can easily fine-tune the visual reconstruction using UP-FacE [77] by adjusting various
semantic facial features, such as nose width and lip size.

Figure 2 presents an overview of the first step in our approach. The high-level concept involves
utilising a generative model G for faces. This model accepts a latent vector w as input, which
encodes facial features and subsequently generates a corresponding face image f. The primary
objective of our system is to predict a latent vector wye. that encodes the relevant features of a user’s
mental image. This allows the generative model G to accurately produce a visual representation
frec of the mental image. To generate the image fie. from the latent vector wy.. we use a pre-trained
StyleGAN?2 [38] model—a generative model trained on the FFHQ [37] faces dataset. Importantly,
StyleGANZ2 first maps the input to a disentangled latent space ‘W, which has a clear advantage
over the original input latent space Z: The ‘W space was shown to exhibit less entanglement [1, 38,
39, 92], resulting in better controllability over the generation process. This disentanglement means
that changes to specific latent dimensions in ‘W tend to correspond to semantically meaningful
edits to the generated image, such as modifying expressions, hairstyles or other facial attributes,
without inadvertently affecting unrelated features. To generate the initial reconstruction, our system
presents the user a selection of n pre-defined auxiliary face images, denoted as Faux = fi, .o fus
which were generated randomly. The user is asked to rank these auxiliary images based on their
resemblance to the mental face image f;,, they have in mind. HAIFAI uses these rankings to determine
the optimal latent vector wy.. that, when passed through StyleGAN2’s generator G, results in an
image fre that matches the mental face image fi,:

G(Wrec) = frec lg fm~

The user’s ability to accurately rank n images diminishes as the number of auxiliary images
increases due to the factorial increase in potential rankings. To address this, we adopt an iterative
approach, limiting the number of images per iteration to six. This simplifies the user’s task and results
in less noisy rankings. In each iteration i, the system presents a different set of six auxiliary images
Fix = fis .. 7, generated using StyleGAN2 by randomly sampling latent vectors W}, = wi, ..., wi.

Given the challenge of comparing and ranking faces across different age and sex groups, our
system categorises faces based on sex (female or male) and age (above or below 40 years). This
approach is commonly used in mental face reconstruction systems [99]. We employed the Insight-
Face'! toolbox to automatically label the sex and age of faces randomly generated using StyleGAN2.
This labelling process allowed us to create distinct sets of auxiliary images for each sex and age
group. HAIFAI receives the sex and age information as input and uses the corresponding sets of
auxiliary images to proceed with the reconstruction process. In the following, we describe each of
these components in detail.

3.1 Reconstruction Network

The objective of the reconstruction network is to predict a latent vector wye. such that this vector,
when processed by the generator G, produces a face image closely resembling the person identity
of the mental image f;,. The architecture of the reconstruction network is shown in Figure 3. The
reconstruction network takes as input multiple tuples W/ ., each containing six auxiliary latent
vectors. These vectors within each tuple are ordered according to the user’s rankings. For each
tuple of latent vectors, we append an additional learnable embedding token of size 512, commonly
referred to as the class token (cls) [17] and add positional encodings such that the model can extract
features based on the ranking of the latent vectors. Each tuple is then processed by a Siamese

https://insightface.ai/projects.
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Fig. 2. Our system HAIFAI first shows users sets of auxiliary faces over multiple rounds, asking them to rank
these faces based on their resemblance to their mental image. A reconstruction network then predicts the
latent vector corresponding to this mental image using the ranked auxiliary latents. A pre-trained generator
decodes this vector to recreate the image. The target and reconstructed face images are then passed through
a pre-trained embedding network to optimise our reconstruction network based on the similarity of their
embeddings. The dotted red arrows indicate the gradient path to train our reconstruction network.

transformer encoder [88], the class token is read out at the end and finally passed through a linear
layer, resulting in a 512-dimensional vector containing relevant features for the respective iteration.
The feature vectors extracted from each iteration are stacked with another learnable token and
passed through a second transformer encoder model. The class token is again extracted at the
output of this transformer and passed through a final linear layer, resulting in the reconstructed
latent vector wyec.

Solely training the reconstruction network to optimise wye. does not guarantee that wye. d Wi
because similar latent vectors do not always result in faces that humans perceive as similar. For
instance, Figure 4 shows three faces generated by StyleGAN2. Faces A and B appear more visually
similar to each other than faces B and C, despite the mean absolute difference between the latent
vectors ws and wg being larger than between wp and wc. This discrepancy arises because the
latent space encodes image features irrelevant to face similarity, such as background, pose and
lighting, independent of what makes faces appear similar to a human observer.

To tackle this issue, we aim to optimise our network based on face embedding vectors instead of
the latent vectors directly. Models like ArcFace [15] embed faces into a space relevant to identity
recognition, as they are specifically trained for this purpose. Unlike the latent space w, using such
face embeddings e pc for the faces in Figure 4 results in a mean absolute difference between e4
and ep that is smaller compared to ep and ec. Consequently, we define the loss function for training
the reconstruction network as follows:

E(G(Wrec)) : E(G(WM))
|E(G(wree))| |E(G(wm))|’
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Fig. 3. Architecture of our reconstruction network. The reconstruction network processes a tuple of six
auxiliary latent vectors ordered by user rankings for each iteration. For each tuple, a learnable 512-dimensional
token (cls) is appended. These tuples are then fed into a Siamese transformer encoder, and the cls tokens
are extracted at the end and passed through a linear layer. The resulting feature vectors are combined with
another learnable token and processed by another transformer encoder. The class token is extracted again at
the output and passed through a final linear layer to produce the reconstructed latent vector of the mental
image.

A B

Fig. 4. Three example images generated with a state-of-the-art StyleGAN2 [38] generator. The mean absolute
difference between the corresponding latent vectors wa and wp is higher compared to the difference between
wg and wc, although images A and B are visually more similar. However, when using face embeddings
extracted with ArcFace [15], the difference between the face embeddings e4 and ep is smaller compared to ep
and ec.

where G is a pre-trained generator network mapping latent space to image space, E is a pre-trained
face embedding network mapping image space to embedding space, and A, is the embedding
similarity loss weighting. Thus, the reconstruction network aims to predict a latent vector wye.
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similar to the target latent wy; that also maximises the cosine similarity between the target and
predicted face embedding.

During the training of the reconstruction network, we input a variable number of tuples from
which it has to infer wye.. This allows us to support reconstructing the mental image after any
number of iterations without changing the network architecture or loss function as in [76], which
can negatively impact the reconstruction quality. Moreover, this allows us to automatically stop the
reconstruction process once no significant changes to the reconstruction can be observed anymore,
thus improving usability and reconstruction times:

i i+1
||W$ec - W;:c ||1 <a, (2)
where « defines the early termination threshold. Once the mean absolute difference between two
reconstructed latent vectors of consecutive iterations is below this threshold, the iterative process
stops, and the latest reconstruction is shown.

3.2 Computational User Model for Face Similarity Ranking

Training our method end-to-end requires collecting and annotating a costly large-scale dataset. For
each training sample, a user must memorise a generated face and then rank six auxiliary images over
multiple iterations based on their similarity to the memorised face. To avoid costly data collection,
we introduce a user model that simulates human ranking behaviour, enabling the quick generation
of extensive and realistic training data. The central component of the user model is a face-embedding
network that extracts embedding vectors to compute the similarity between two faces. We use
this network to define the user model described in Algorithm 1. Given a set of auxiliary faces .. _,
their latent vectors W;ux, a target face f;,,, an embedding network E and a noise level o, the cosine
similarities between the target and auxiliary face embeddings are calculated. As can be seen in line 6
of Algorithm 1, we add some noise to the calculated cosine similarities uniformly sampled between
[—o, o]. Auxiliary faces that look alike have a comparable cosine similarity with the target face.
Consequently, adding noise can cause random changes in the ranking of these faces. The motivation
for this arises from the observed noise in user rankings, characterised by significant variability
in the rankings assigned by different humans to the same faces. This observation is discussed
in greater detail in Section 4. Introducing noise into the user model creates a non-deterministic
version, which helps to prevent severe overfitting during the optimisation of the reconstruction
network. The auxiliary latent vectors are then sorted according to these noisy similarities, ranking
the most similar face first, followed by the others in decreasing order of similarity.

Existing face embedding models are primarily trained for face identification tasks [15, 58, 89, 90].
Although these models extract meaningful embeddings, they do not explicitly learn to compare and
rank faces. Sadovnik et al. [62] demonstrated that measuring identity does not necessarily equate
to measuring similarity, leading to rankings that diverge from human judgement. To better align
the user model with human behaviour, we found that it is beneficial to fine-tune a pre-existing face
embedding model on a small face similarity dataset derived from human feedback. For fine-tuning,
we used a novel dataset we collected (see Section 4) comprising triplets (fa, fp, fn), where f; is a
reference face (anchor), f, is a face more similar to f; (positive pair) compared to f,, which is less
similar to f, (negative pair), as determined by human judgement. Using this dataset, the embedding
network is fine-tuned with a triplet margin loss objective defined as

Lo =max((fa = fp)* = (fa = fu)* + m,0), (3)

where m defines the required margin between the positive and negative pairs to achieve a zero loss.
This fine-tuning process ensures that the network adjusts the embeddings so that faces perceived
as similar by humans are also close in the embedding space.
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Algorithm 1: User Model of Face Image Ranking Behaviour: Auxiliary and Target Faces Are
Projected into an Embedding Space. The Cosine Similarity between Each Auxiliary Face Embedding
and the Target Face Embedding Is Computed, and Random Noise Is Added. These Auxiliary Face
Latents Are Then Ordered Based on Their Similarity Scores, with the Most Similar Face Ranked
Highest, and the Least Similar Face Ranked Lowest.

1: Input: Auxiliary faces for the current iteration 7., corresponding latents W/,
target face fm, a face embedding network E, and noise level o.

. Output: Ranked auxiliary latents (wg1, WRa, . . ., WRp), WR € Wi,

. similarities «— ]

: for f in Faux do

similarity < cosineSimilarity(E(f), E(fm))

noisySim « similarity + U(-o, o)

similarities.append(noisySim)

: end for

: rankedIndices « argSort(—similarities)

. rankedLatents «— WaiuX [rankedIndices]

: return rankedLatents

T R A SR

SN
[

3.3 User-Based Face Refinement

Upon ranking all tuples of auxiliary images or terminating early based on the criterion defined
in Equation (2), users are presented with the initial reconstruction generated by HAIFAIL While a
holistic approach to face reconstruction is important, prior works like CG-GAN [99] have shown that
a hybrid approach combining holistic and constructive methods can lead to improved reconstruction
results. Therefore, users can further refine the face manually using UP-FacE [77], a tool designed to
manipulate face images produced by generative adversarial networks. Using the same StyleGAN2
model, we can load the initial reconstructed face obtained after the first stage of HAIFAI into
UP-FacE. This tool offers a user-friendly interface, shown at the bottom of Figure 10(a), that displays
the current image alongside a set of 24 sliders. Each slider corresponds to a distinct semantic face
feature, such as nose width or chin length, which users can adjust simply by moving the sliders.
These 24 semantic face features are defined through 2D facial landmarks, and a pre-trained model
has learned to modify the latent vector to reflect the desired changes in the face image. We opted
to integrate UP-FacE into HAIFAI due to its capability to facilitate easy, fine-grained and precise
control over facial features that are vital for face identification, including the eyes, eyebrows, mouth
and nose. Integrating UP-FacE into HAIFAI allows for a more interactive and precise customisation
process, enhancing the overall quality of the final reconstructed face image. Users can iteratively
adjust the facial features, receiving immediate visual feedback on how each slider manipulation
alters the face. This interactive refinement ensures that the final output aligns more closely with
the user’s expectations.

4 Data Collection

To fine-tune the embedding network as described in Section 3.2 and to evaluate HAIFAI on real
human data, we conducted a data collection user study.

4.1 Procedure

The data collection study was conducted online with 408 participants recruited through AMT. Each
participant completed 23 trials without time limit, each comprising memorisation and ranking steps.
During the memorisation phase, we asked participants to look at a random target face generated by
StyleGAN2 [38] until they had memorised it. The target face remained consistent throughout the 23
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Fig. 5. Agreement in face rankings among humans is shown in this matrix. Each cell (i, j) represents the
probability that two separate human raters will assign ranks i and j to the same face. A positive correlation
is noted in human rankings, with an average Kendall’s Tau value of 0.267. Additionally, humans tend to
show higher consensus on the most and least similar faces, whereas the rankings in the middle range exhibit
greater variability.

trials, allowing participants to refresh their memory as needed by observing the target face again
between trials. After memorisation, participants were shown each set of auxiliary faces, which
matched the sex and age category of the target face, and were instructed to rank the six images
based on their perceived similarity to the memorised face. Out of the 23 trials, 20 were actual trials,
and 3 were attention checks that we added without telling the participants to ensure data quality.
For these checks, one auxiliary face was replaced with the actual, ground truth target face. Proper
engagement in the data collection was assumed if participants ranked the target face as the most
similar in all three attention checks.

4.2 Dataset Statistics

We cleaned the dataset by excluding data from participants who failed at least one attention check.
Out of 408 participants, 76 failed all attention checks, 40 failed two and 19 failed one, leaving a
total of 275 participants in our dataset. Rejecting approximately one-third of participants based on
standard attention checks is typical for AMT data collections [63]. Our dataset included 15 target
images for which data from two different participants were collected, enabling the calculation of a
ranking agreement between participants. Figure 5 shows the agreement between two participants
for each of the six possible ranks. Each cell (i, j) shows the probability that two independent
participants assign ranks i and j to the same face. The probability of assigning the same ranks is
highest, and significant disagreements are rare. The average Kendall rank correlation coefficient
between participants was 0.267 (p < 0.05), indicating that humans tend to rank faces similarly,
albeit with considerable variability. This variability in the rankings led to our design choice of a
noisy, non-deterministic user model as described in Section 3.2.
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We randomly selected 75 out of the remaining 275 participants as a validation set to evaluate
the performance of HAIFAI on real human data during training. The data from the remaining 200
participants were utilised to generate triplets for fine-tuning the ArcFace [15] embedding network.
Out of these, 180 were randomly selected to form the training set, while the data from the remaining
20 participants were used to create the validation set. For each iteration completed by a participant,
we generated (g) = 15 different (f;, f,, fn) triplets, where f; = f;, and (f,, f,) are all 15 possible
pairs of the six ranked auxiliary images. The higher-ranked image in a pair was defined as the
positive example f,,, while the lower-ranked image was the negative example f,. This resulted in
300 triplets per participant (15 pairs for each of the 20 iterations), yielding a total of 54,000 triplets
for training and 6,000 for validation.

5 Experiments
5.1 Implementation Details

Embedding Network. For the embedding network in our computational user model and during loss
calculation when training the reconstruction network, we used the state-of-the-art face recognition
network ArcFace [15]. ArcFace was trained on the IBUG-500K dataset that comprises 11.96 million
images and 493K identities. It employs a ResNet50 [28] neural network architecture as its feature
extractor, producing 2,048 4 x 4 feature maps. These feature maps are flattened and fed into an output
model that includes batch normalisation [34], dropout (with a 40% drop rate) [75], a fully connected
layer with 512 neurons, followed by another batch normalisation layer. The weights of this model
were initialised using the pre-trained ArcFace model. We kept the ResNet50 feature extractor frozen
while the output model underwent fine-tuning using the collected triplets described in Section 4.
The network is trained for 100 epochs with a batch size of 32 using the contrastive loss with a
margin of 0.1 defined in Equation (3) using an Adam [41] optimiser with a learning rate of 0.001,
B = 0.9 and B, = 0.999.

Reconstruction Network. Both transformer encoder modules of the reconstruction network consist
of four encoder blocks with hidden dimensions of 512 and 8 attention heads each. We add sinusoidal
positional encodings [88] to the input of both transformer modules. The intermediate Siamese
linear and output linear layers consist of 512 neurons without activation function; non-linearities
are only present within the transformer modules. We generated 100K target images for training by
randomly sampling latent vectors from a normal distribution and decoding them with StyleGAN2
[38]. Using our sets of auxiliary images and our user model defined in Algorithm 1 with noise
o = 0.22, we simulated the human ranking of the auxiliary images for each generated target
image. The reconstruction network can process a variable number of tuples i < 20 containing six
ranked latent vectors for each of i iterations. We set the maximum number of iterations to 20 and
terminated early during test time based on Equation (2) with a = 0.1. We used the loss function
defined in Equation (1) for training with A, = 1. The model was trained for 100K steps with a batch
size of 32 using the Adam optimiser [41] with a learning rate of 0.0001, f; = 0.9 and 8, = 0.999.
We used the data from the 75 participants left out of the data collection study for validation and
selected the model that achieved the lowest validation loss.

5.2 Reconstruction Study

To evaluate our system, we conducted an additional user study with 12 participants (6 females)
between 24 and 54 years old (Mean = 32; SD = 12). Participants were recruited locally among col-
leagues and friends, and the study design was approved by the university’s ethics committee. After
giving informed consent, the study started. The study began with explaining the system, allowing
participants to familiarise themselves with the process. Once participants were comfortable, a
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target face was presented for memorisation. There was no time limit for the memorisation step, but
participants could not view the target image again once the experiment had commenced. We used
the same pool of target faces as in Strohm et al. [76], allowing us to compare our results to theirs.

The reconstructed mental image after the first stage was displayed after completing all 20 ranking
iterations or after HAIFAI stopped early. We then collected data based on the following six evaluation
metrics:

— Mental Rating: Participants rated the similarity between the memorised image and the recon-
struction on a seven-point Likert scale, relying solely on their memory of the target image
without viewing it during rating.

— Visual Rating: Participants rated the similarity between the target and reconstructed images
on a seven-point Likert scale, with both images displayed side by side for comparison.

— Embedding Similarity: We calculated the cosine similarity between the embeddings of the
target and reconstructed images to assess the reconstruction quality. As the embedding model
is fine-tuned to extract similar embeddings for similar looking faces, this metric allows us to
quantitatively compare the reconstruction quality of different methods.

— Task Completion Time: The time participants took to complete the reconstruction.

— System Usability Scale (SUS): Participants completed a SUS questionnaire to assess the
system’s usability, yielding a score from 0 to 100, with higher scores indicating better usability.

—NASA Task Load Index (NASA-TLX): Participants completed the NASA-TLX questionnaire
to evaluate perceived workload across six sub-scales: mental demand, physical demand,
temporal demand, performance, effort and frustration. The overall workload score ranges
from 0 to 100, with lower scores indicating lower perceived workload.

Following the initial reconstruction, participants were asked what changes would make the
reconstructed face more similar to their mental image. In the second stage, participants used UP-
FacE [77] to refine the initial reconstruction as much as possible. After this, we again collected data
based on the aforementioned six metrics and feedback on possible improvements and tools they
would need to enhance the reconstruction further. The total duration of the study was approximately
30 minutes, depending on how long participants took to complete each step.

Figure 6 presents example reconstructions from our conducted user study alongside those from
two state-of-the-art deep learning-based methods: CG-GAN [99] and MFRS [76]. CG-GAN is a
hybrid reconstruction method that allows users to select and merge faces based on an interactive
evolution paradigm, as well as manually edit specific facial attributes. MFRS is our previous holistic
face reconstruction system, which requires users to rank sets of faces similarly to HAIFAI The top
row shows the target image that participants had to memorise. The second and third rows display
reconstructions produced using the MFRS and CG-GAN methods. The last two rows present results
from our method HAIFAI and an ablated version without UP-FacE [77]. Quantitative results from
the user study are presented in Table 1. We evaluated the significance of the differences between our
methods against the baselines for each metric using either a paired t-test or a Wilcoxon signed-rank
test, depending on the normality of the data, as determined by a Shapiro-Wilk test. Differences
were considered significant if the Bonferroni—Holm corrected p-value was <0.05. An asterisk (')
indicates a significant difference to the strongest baseline, either CG-GAN or MFRS.

Regarding the mental rating, participants rated CG-GAN’s reconstructions higher than our
method’s, with scores of 4.8 compared to 4.2 for HAIFAI without UP-FacE and 4.6 with it. However,
our method exceeds the performance of [76], and there is no statistically significant difference
between HAIFAI and CG-GAN. Regarding the visual rating, HAIFAI outperforms all baselines.
Similar to CG-GAN, we observe a drop from mental to visual rating for HAIFAL; however, this drop

ACM Transactions on Interactive Intelligent Systems, Vol. 15, No. 2, Article 10. Publication date: May 2025.



10:14 F. Strohm et al.
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Fig. 6. Example reconstructions from our user study compared with the results from Strohm et al. [76].
Each column shows the results for one participant. The first row shows the target faces participants had to
memorise, and the following two rows show the reconstructions of the baselines. The last two columns show
the initial reconstruction from HAIFAI after the first stage as well as the results from HAIFAI, where faces
were further edited with UP-FacE [77].

Table 1. Comparison of Our Proposed Method HAIFAI with CG-GAN [99] and MFRS [76] Based on Our
User Study Results

Method Mental Visual Embedding SUST NASA-TLX | Time (Mins) |
Rating T Rating T Sim. T

CG-GAN [99] 48 +0.8 3.9+0.9 0.36 £ 0.2 59+ 13 43 £ 11 17.8 £5.6

MERS [76] 4.0 +0.8 4.1+£09 0.38+0.1 85+ 13 27 £18 10.2 +4.1

HAIFAI w/o UP-FacE 4.2 +£0.9 4.3+0.8 0.43* £ 0.1 87+11 25+12 8.3* +3.7

HAIFAI 4.6 +£0.8 4.4 +0.8 0.43" £ 0.1 77 £ 13 31" + 12 11.3+3.3

The best result in each column is highlighted in bold, the second best is underlined. An asterisk (*) indicates a significant
difference to the strongest baseline.

is smaller and not statistically significant, unlike for CG-GAN. In our newly introduced embedding
similarity metric, HAIFAI significantly outperforms the baselines with scores of 0.43, compared
to 0.36 for CG-GAN and 0.38 for MFRS. Further metrics in Table 1 include the average SUS score,
NASA-TLX and task completion time. While HAIFAI without UP-FacE outperformed both baselines
across these metrics, we can observe a significant performance degradation in these three usability
metrics when subsequently using UP-FacE. The SUS decreases from 87 to 77, NASA-TLX increases

ACM Transactions on Interactive Intelligent Systems, Vol. 15, No. 2, Article 10. Publication date: May 2025.



HAIFAIL: Human-Al Interaction for Mental Face Reconstruction 10:15

from 25 to 31 and the average reconstruction times also significantly increase from 8.3 to 11.3
minutes.

5.3 Lineup Study

Beyond the metrics detailed in Table 1, we performed an additional evaluation to determine the
identification rate of our reconstructions through a lineup study, i.e., one of the practical use-cases
of our system. This is particularly relevant in fields like forensics, where the key objective may
not be a flawless reconstruction of the mental image but rather sufficiently good that it leads to
correct identification of the individual. Lineups comprising the true target and similarly appearing
faces were created to compute the identification rate. Participants were then tasked with ranking
these faces based on their resemblance to their reconstruction. Following prior work [76, 99], the
identification rate IR is defined as

: #Rank 1

IR = ——— X 100. (4)
#Votes

The lineup’s composition is critical, as an improper selection can skew the results. If the faces in
the lineup are distinctly different from the target, the identification becomes too easy, artificially
boosting the identification rate. Zaltron et al. [99] addressed this by introducing noise to the
latent vectors of generated target faces to create similar-looking faces. However, generating such
variations is more complex since our targets are real faces. Instead, we identified the three nearest
neighbours within the FFHQ or CelebA-HQ datasets from which the target faces were chosen.
Using the ArcFace [15] embedding space, we selected faces with the closest embedding vectors,
excluding different images of the same individual. This approach yielded 24 lineups, each containing
four candidate faces paired with reconstructions from both our methods. Example lineups are
shown in Figure 7. While this allows us to compare the identification rates of our system with
the results from [76], it’s important to note that each lineup always includes the target face. This
condition, which may not hold in real-world situations, could artificially enhance the identification
rates for both methods. We recruited 18 independent raters for an online study. Participants were
randomly divided into two groups and completed 12 trials in random order. Each trial involved
ranking a lineup based on similarity to reconstructions generated by HAIFAI, either with or without
the second stage using UP-FacE, depending on the assigned group. This design ensured that each
participant evaluated each lineup only once, mitigating potential biases and enabling cross-group
comparison of all reconstructions. The study results showed an identification rate IR of 60.6% for
HAIFAI and 59.3% without the second stage. Both of these results mark a statistically significant
improvement to the previous leading performance of 56.1% by CG-GAN, as determined by a
Wilcoxon signed-rank test with p < 0.05. Moreover, participants could rank the target faces within
the top three based on our systems reconstructions in 98.5% of the cases, improving over the 95.0%
previously achieved by CG-GAN.

5.4 Ablation Experiments

We conducted a series of ablation experiments to evaluate the effectiveness of specific model design
decisions. Figure 8 shows Gaussian-smoothed curves for five different models, with the number of
batch update steps during training on the x-axis and test-set embedding similarity on the y-axis
(higher is better). The baseline model, represented by the brown curve, corresponds to the first
stage of HAIFAI without incorporating Fine-Tuned Embeddings (TE), Variable Iterations (VI),
or the Noisy User Model (NUM). This model achieves a peak test-set embedding similarity of
0.397 but begins to severely overfit thereafter, as indicated by the decline in test-set embedding
similarity with additional updates. The pink line illustrates the performance of the baseline model
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Fig. 7. Example lineups used in our lineup study. Participants had to rank the lineup according to the similarity
with the reconstruction generated by HAIFAL.
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Fig. 8. The figure presents a plot illustrating the embedding similarity (where higher values indicate better
performance) as a function of the number of batch update steps during training for various ablated models.
The brown baseline curve represents the performance of the first stage of HAIFAL, but with a deterministic
user model, without TE, and without VI. It is evident that incorporating VI, TE and a NUM each contributes
to improving the overall model performance.
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Fig. 9. This figure shows the change in latent vector (red line) as well as the embedding similarity (blue line)

over the number of iterations used for reconstructing the image. We observe that the model converges after

15 iterations on average.

when using the embedding network fine-tuned on our collected data, as described in Section 4.
We observe a slight improvement in peak embedding similarity to 0.402 and reduced overfitting
when utilising TE. The green line represents the results for the baseline model when training with
a variable input sequence length instead of a fixed 20 iterations as in [76]. This approach not only
permits early termination of the reconstruction process, as described in Section 3, but also appears
to regularise the network, resulting in an improved embedding similarity of 0.405 and diminished
overfitting. The most significant performance enhancement is achieved by introducing noise into
the user model, as described in Algorithm 1. This is evidenced by the orange and blue lines, which
no longer overfit the training data and reach a peak embedding similarity of 0.421. The blue line,
representing the first stage of HAIFAI used in our evaluation studies, demonstrates that training
with a variable number of iterations as input does not negatively impact reconstruction quality.
However, it requires a longer training duration to reach a comparable performance. Unlike [76]
this allows us to stop the reconstruction at any time without reconstruction quality degradation
when using all iterations.

Number of Iterations. The maximum number of iterations for HAIFAI is set to 20, as additional
iterations do not further enhance the reconstructions. Figure 9 illustrates the number of iterations
on the x-axis, with the mean absolute change of the latent vector compared to the previous iteration
on the left y-axis, and the validation set embedding similarity on the right y-axis. As anticipated,
the embedding similarity increases monotonically with the number of iterations until it begins
to converge around 15 iterations. This trend is consistent with the observed change in the latent
vector, which approaches zero after 15 iterations. These observations suggest that, on average,
the reconstruction process can be effectively terminated after 15 iterations without compromising
reconstruction quality. Based on the observations made in Figure 9, we set the early termination
threshold « for Equation (2) to 0.1. The reduction in required iterations through automatic early
termination is evident in the decreased reconstruction time presented in Table 1, compared to [76],
which utilised a fixed 20 iterations. During our user study, our system terminated after as few as 10
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Fig. 10. Part (a) shows the user interface for the first stage of HAIFAI at the top and UP-FacE at the bottom.
For our method, users are iteratively presented with six faces that they can rank via drag and drop (top).
Afterwards, users are subsequently fine-tuning the reconstruction with UP-FacE (bottom). Part (b) shows the
main interface of CG-GAN. Users are presented with nine faces that they can manipulate via randomising,
mutating or manual editing. The interface contains many buttons to lock specific attribute axes and sub-
interfaces for different functionalities like manual editing.

iterations and never exceeded 19 iterations. The stopping criterion might be too aggressive, as it
immediately halts after no change is observed for a single iteration.

6 Discussion
6.1 Comparison with Baselines

Our user study results (Table 1) revealed substantial improvements in all six metrics for HAIFAI
without the second stage compared to the previous state-of-the-art from Strohm et al. [76]. While
HAIFAI with the second stage achieves the best reconstruction quality based on the user ratings,
it comes at the cost of slightly higher workload, reconstruction times and lower usability. To
evaluate reconstruction quality, we used two user-based metrics: mental rating and visual rating.
The mental rating gauges users’ perceived similarity to the target image based on their memory
at the end of the experiment, whereas the visual rating involves a side-by-side comparison of
the target image and the reconstruction, allowing users to more accurately assess reconstruction
quality. Although CG-GAN achieved a higher mental rating (4.8) than our method (4.2/4.6), HAIFAI
surpassed both CG-GAN and Strohm et al. [76] in the visual rating. Notably, CG-GAN’s score
dropped more substantially from mental (4.8) to visual (3.9) rating, while HAIFAT’s drop was smaller
(4.6 to 4.4) and not statistically significant. This discrepancy between mental and visual ratings
may stem from participants’ mental image shifting towards the reconstructed face during editing,
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a phenomenon we discuss in detail in Section 6.2. In many applications, particularly in forensics,
the primary objective is not necessarily to maximise perceived similarity but rather to enhance
the probability of correctly identifying the target from the reconstruction. Our additional user
study found that HAIFAI achieves an identification rate of 60.6%, which is notably higher than
CG-GAN’s 56.1%. Given the large sizes of the CelebA-HQ [36] and FFHQ [37] datasets (30K and 70K
images, respectively), and our approach of selecting nearest neighbours for challenging lineups,
this level of performance is encouraging. Furthermore, in 98.5% of cases, the target face was not
ranked last, showing our reconstructions were closer to the true target than at least one of the three
nearest neighbours. Interestingly, despite CG-GAN’s higher mental rating, our method’s higher
identification rate suggests the mental rating metric may be skewed by factors unrelated to true
similarity. Beyond reconstruction quality, our methods significantly outperform CG-GAN on three
key usability metrics: Users gave higher SUS scores, lower NASA-TLX ratings and reported faster
task completion times. We attribute these improvements to a more streamlined, ranking-based
approach that shifts the complexity of high-dimensional face search from the user to the system.

6.2 Human Factors and Interaction Design

Although the core contribution of HAIFAI is computational, our user studies and participant
feedback highlight important human factors and interaction design insights for future mental
image reconstruction methods.

Minimising Cognitive Load. Compared to more feature-intensive systems like CG-GAN [99], our
ranking-based approach simplifies interaction and reduces cognitive load. In CG-GAN, participants
must choose a suitable base face, explore multiple parallel feature spaces and refine attributes indi-
vidually. This complexity was reflected in CG-GAN’s significantly higher NASA-TLX score of 43.4
compared to HAIFAD's 27.2 (Table 1). By contrast, HAIFAI decomposes the reconstruction task into
straightforward ranking steps, after which the system takes on the challenge of high-dimensional
exploration. This approach aligns with human cognitive patterns, where broad judgments (e.g.,
‘this face is closer to what I remember’) are more easily handled than incremental tuning of many
separate attributes.

Structured Task Allocation. A key insight of our work is the clear benefit of a structured, two-
stage interaction approach. In the first stage, users only rank sets of candidate faces on overall
similarity, offloading the heavy lifting to the AI system, which integrates this feedback holistically.
Our participants noted that these small, discrete tasks were less overwhelming and helped maintain
a stable mental image. This design contrasts with purely manual editing, where the user must
recall many details simultaneously (e.g., nose shape, eye spacing, brow curvature), often leading
to frustration. From an interaction-design perspective, our results suggest that incremental user
input, such as short ranking tasks, can outperform extensive manual editing for tasks requiring
high-quality reconstructions with minimal user burden. Moreover, our SUS results indicate that
users appreciate a balanced division of labour between themselves and the Al. With HAIFAL the Al
quickly identifies a roughly correct latent space region. The user only steps in at a fine-grained level
when they feel confident in adjusting specific details. Interviews and open-text feedback further
underscored that participants valued having a manageable number of actions per stage. They felt a
sense of agency in the second stage, which is still essential for personal satisfaction, yet welcomed
the system’s autonomy to handle global exploration. In this sense, HAIFAI underscores a broader
principle: Tasks that Al can do quickly and more systematically, like searching for a rough match
in a high-dimensional space, are best left to the Al, whereas humans excel at noticing subtle details
and making targeted refinements once a decent approximation is available.

Manual Editing. Although the ranking-based reconstruction alone already achieved strong
performance, many participants felt it was ‘incomplete’ when it came to final subtle adjustments,
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particularly for facial features that are highly important and define user identity (eyes, nose,
mouth). By integrating UP-FacE [77] as a second stage, HAIFAI becomes a hybrid system that
fuses holistic and constructive methods. This inclusion led to improvements in the user-rated
similarity, embedding similarity and line-up identification rates, albeit with some tradeoffs: In
our study, time to completion increased from 8.3 to 11.3 minutes, and usability ratings dropped
from 87 to 77 on the SUS (Table 1). These results indicate a tradeoff: the potential for higher-
quality outcomes versus additional user burden and time. In domains like forensics, where accuracy
might outweigh ease and speed, participants generally found the second stage worthwhile. When
polled on what they wished to modify after the system’s initial reconstruction, most participants
focused on the most important features: eyes, nose, mouth and general head shape. Secondary
interests included hairstyle and colour, beard, age, skin tone and head orientation. Although these
secondary features can be changed in real life (e.g., hairstyle), many users still perceived them
as relevant for perceived facial similarity. Some participants suggested that future systems might
benefit from lightweight text-based editing (e.g., ‘make the hair shorter’ or ‘add a beard’) to handle
these changeable properties more intuitively. However, participants also expressed concerns about
interface complexity, noting that while having more means to modify the face is beneficial, these
options should be hidden or optional to avoid causing confusion. Our study results also suggest
that some participants would value built-in ‘smart suggestions’ based on their ranking patterns,
e.g., automatic age adjustments or demographic-based style changes if consistently selected. Such
adaptivity and deeper mutual understanding between the user and Al could further streamline the
process.

Interestingly, the extent of active manual editing appears linked to a phenomenon referred to
as ‘mental shift’. Previous work by Strohm et al. [76] identified a significant drop from mental
to visual ratings for CG-GAN [99], where manual editing is central. They attributed it partly to
participants unintentionally internalising the edited image as their mental reference. Using their
own method, however, this effect was not present, likely because their method does not require
active editing. This suggests that methods requiring fewer manual interactions help maintain a
more stable memory of the target. Likewise, our current results show that after the first stage,
which involves no active face editing, there is even a slight (albeit not statistically significant)
increase from mental to visual rating. However, after the second stage, where participants can
manually edit face features, we again observe a drop in ratings. Still, it is notably smaller than in
CG-GAN, likely because the necessary adjustments in HAIFAI are far less extensive. These findings
imply that reducing manual editing demands is beneficial for tasks relying on an intact mental
image. A higher degree of active editing can inadvertently shift a person’s memory, highlighting
a human-factors challenge that goes beyond purely computational concerns. In high-stakes use
cases like forensic reconstructions, where accurate memory is paramount, systems should aim
to minimise the user’s manual intervention or at least offer a structured, short-burst approach to
preserve the fidelity of the mental image.

6.3 NUM

Since we are training HAIFAI with simulated human data, achieving high similarity between real
human rankings and simulated rankings is essential. Figure 11(a) displays a 6 X 6 matrix indicating
the agreement between our user model and human rankings: Each cell ¢; ; shows the probability that
a human assigns rank i to an image. In contrast, the model assigns rank j. Compared to the human
ranking agreement in Figure 5, our computational user model in Figure 11(a) demonstrates rankings
that closely align with human judgments. While the human-human Kendall rank correlation
coefficient is 0.267, the model-human coefficient is 0.284 (p < 0.05), indicating similar average
ranking behaviour. We also investigated why injecting noise improves model performance (Figure 8).
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Fig. 11. Face ranking agreement between humans and our user model (a) and agreement between the NUM
itself (b). For the latter, we generated two rankings by sampling from the NUM and compared these rankings
to assess the internal agreement. Each cell (i, j) shows the probability that human raters/user model assign
rank i and the user model rank j to the same face.

A deterministic user model yields a model-model rank correlation of 1.0 by definition and leads to
severe overfitting: The network essentially learns to perfectly match an artificially clean distribution,
which poorly generalises to real-world data. By injecting noise into the embedding similarities as
described in Algorithm 1, we obtain noisy rankings more akin to human variation. We determined
the noise level o = 0.22 via grid search, minimising the Wasserstein distance between the human-
human and model-model ranking distributions. This results in the model-model ranking distribution
shown in Figure 11(b), with a Kendall rank correlation of 0.258, which is close to the human-human
correlation, thereby making the simulated rankings more realistic.

An important takeaway from our work is that an improved user model improves reconstruction
performance. While our evaluation suggests that the current user model already approximates
average human ranking behaviour well, as evidenced by the similar human-human and model-
human correlation coefficients, there remains potential for further refinement. Human rankings
exhibit a degree of noisiness on average, but it might be possible to reduce this variance by better
modelling individual user preferences. For instance, instead of using a static user model that
represents the average human, a dynamic user model could adapt to the specific ranking behaviour
of individual users. This personalised approach may help reduce noise in the simulated rankings,
offering the reconstruction network richer and more meaningful signals during training. As a
result, it could further enhance reconstruction performance while ensuring robust generalisation
to unseen users.

6.4 Limitations and Future Work

A practical limitation of HAIFAI arises not from our method itself but from the biases present in the
state-of-the-art generative models on which it builds. Specifically, the StyleGAN backbone used in
our approach is trained on well-known facial image datasets (e.g., FFHQ [37], CelebA-HQ [36]) that
do not fully capture the global diversity of facial features. Consequently, these datasets introduce
biases in the generated faces, particularly if certain racial or ethnic attributes are under-represented.
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Due to these biases, our current work has focused primarily on Caucasian faces. However, with
a more balanced generative model, our method could easily be extended to include an initial
option for selecting a preferred ethnicity, enabling the system to generate and display matching
auxiliary outputs accordingly. Moreover, while HAIFAT offers strong baseline performance, certain
applications may require even more sophisticated editing of external and stylised attributes (e.g.,
hairstyle, lighting, accessories). Although UP-FacE already allows refined control of facial features,
further integration of attribute-based or language-based editing tools could improve realism at the
cost of more interface complexity and user effort. Finally, HAIFAI was tested under controlled lab
conditions with new faces that participants had only briefly studied. In real-world settings, e.g.,
generating a facial composite of someone a witness saw weeks before, the user’s memory could be
incomplete or less accurate. Investigating how different levels of familiarity and recall difficulty
impact ranking consistency and final reconstructions is an open area for future work.

7 Conclusion

In this work we introduced HAIFAI—a novel system where human and Al interact to reconstruct
the mental image of the user. Unlike previous methods that required users to reconstruct mental
images using cumbersome and time-intensive tools, our approach only requires users to iteratively
rank images of faces based on their similarity to their mental image. Our system integrates image
features across all iterations to visually decode the mental image using a state-of-the-art generative
model. In a further step users can optionally further improve the reconstruction manually with an
easy-to-use slider interface. We validated our system through extensive quantitative evaluations
involving two user studies with a total of 30 participants. The results of these studies showed our
system’s superior performance in terms of reconstruction quality and time, identification rate,
usability and cognitive load. These findings underscore the potential of human-Al interaction in
enhancing cognitive tasks, paving the way for future advancements in personalised Al applications.
Further research could explore extending this approach to other domains where mental imagery
and subjective experience play a crucial role.
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