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Analysis of everyday human gaze behaviour has significant potential for ubiquitous computing, as evidenced by
a large body of work in gaze-based human-computer interaction, attentive user interfaces, and eye-based user
modelling. However, current mobile eye trackers are still obtrusive, which not only makes them uncomfortable
to wear and socially unacceptable in daily life, but also prevents them from being widely adopted in the social
and behavioural sciences. To address these challenges we present InvisibleEye, a novel approach for mobile eye
tracking that uses millimetre-size RGB cameras that can be fully embedded into normal glasses frames. To
compensate for the cameras’ low image resolution of only a few pixels, our approach uses multiple cameras to
capture different views of the eye, as well as learning-based gaze estimation to directly regress from eye images to
gaze directions. We prototypically implement our system and characterise its performance on three large-scale,
increasingly realistic, and thus challenging datasets: 1) eye images synthesised using a recent computer graphics eye
region model, 2) real eye images recorded of 17 participants under controlled lighting, and 3) eye images recorded
of four participants over the course of four recording sessions in a mobile setting. We show that InvisibleEye

achieves a top person-specific gaze estimation accuracy of 1.79➦ using four cameras with a resolution of only
5× 5 pixels. Our evaluations not only demonstrate the feasibility of this novel approach but, more importantly,
underline its significant potential for finally realising the vision of invisible mobile eye tracking and pervasive
attentive user interfaces.
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Fig. 1. (top) Classic approaches require high-resolution imaging sensors, resulting in rather bulky and obtrusive headsets,
as well as hand-optimised algorithms for eye landmark detection and geometric gaze mapping. (bottom) InvisibleEye is
a novel approach for mobile eye tracking that uses millimetre-size RGB cameras that can be fully embedded into normal
glasses frames. To compensate for the cameras’ low image resolution of only a few pixels, our approach uses multiple
cameras in parallel and learning-based gaze estimation to regress to gaze position in the scene camera coordinate
system (red cross).

1 INTRODUCTION

Human gaze has a long history as a means for hands-free interaction with ubiquitous computing systems
and has, more recently, also been shown to be a rich source of information about the user [13, 18, 36].
Prior work has demonstrated that gaze can be used for fast, accurate, and natural interaction with both
ambient [31, 53, 63, 65, 73] and body-worn displays, including smartwatches [3, 21]. Eye movements are
closely linked to everyday human behaviour and cognition and can therefore be used for computational
user modelling, such as for eye-based recognition of daily activities [14, 15], visual memory recall [10],
visual search targets [49, 50, 70], and intents [7], or personality traits [25] – including analyses over long
periods of time for life-logging applications [17, 52]. Interest in gaze has been fuelled by recent technical
advances and significant reductions in the cost of mobile eye trackers that can be worn in daily life and
thus provide access to users’ everyday gaze behaviour [9].

However, despite its appeal, mobile eye tracking still suffers from several fundamental usability problems.
First, current mobile trackers are still rather uncomfortable to wear, especially during long-term recordings.
The main reason for this is high-quality imaging sensors that are large and thus often occlude the user’s
field of view. In addition, the sensors themselves as well as the additional electronics and wiring required
to operate them makes current headsets heavy and cause discomfort or even pain. Second, current mobile
eye trackers limit users’ mobility given that they require a wired connection to a recording computer both
as a power supply and for real-time image processing (often in the form of a laptop worn in a backpack).
Eye trackers that do not require a wired connection instead store data on the device itself but, on the
downside, are not well-suited for real-time applications. In addition, tetherless headsets require a battery,
which adds to their weight and further limits their recording time. Finally, the obtrusive design of current
eye trackers leads to low social acceptance and unnatural behaviour of both the wearer and people they
interact with [41, 45], thus fundamentally limiting the practical usefulness of mobile eye tracking as a
tool in the social and behavioural sciences.
To address these issues, we argue that it is ultimately necessary to fully integrate eye tracking into

regular glasses, i.e. to effectively make eye tracking visually and physically unnoticeable to both the wearer
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and others. We believe that a key requirement for such unnoticeable (invisible) integration is to reduce the
size of an eye tracker’s core component: the imaging sensors. Smaller sensors would not only significantly
reduce the device’s weight but could also be positioned in the visual periphery to avoid occlusions within
the users’ field of view. In addition, the low resolution common to these sensors generates significantly
less data that could more easily be processed on the device itself, stored, or transmitted wirelessly, thus
removing the need for a separate recording device altogether. Finally, the reduced computation required
to process low-resolution images decreases the load on the processor, which in turn could help to extend
the recording time, which is limited to a few hours for current mobile eye trackers.
As a first step towards realising the above vision, we present InvisibleEye, a novel mobile eye tracker

that uses millimetre-size imaging sensors with a resolution of only a few pixels that can be fully embedded
into a normal glasses frame (see Figure 1). Traditional image processing and computer vision methods
for eye landmark detection (most importantly pupil and pupil centre) and gaze estimation in mobile
eye trackers require high-quality eye region images and are thus not suitable for such low-resolution
sensors. Inspired by recent advances in remote gaze estimation in computer vision [71, 72], we instead
propose a learning-based approach that does not require robust detection of eye landmarks but directly
regresses from low-resolution eye images to 3D gaze directions. To compensate for the low resolution of
each individual imaging sensor, and thus to improve overall gaze estimation accuracy, InvisibleEye uses
multiple sensors positioned around the eye in parallel. In this work we learn a person-specific model for
each user using training data recorded beforehand. Calibration-free (person-independent) gaze estimation
is an open research challenge and an important direction for future work. We evaluate InvisibleEye
on three large-scale, increasingly realistic datasets: 1) 200,000 eye images synthesised using a recent
computer graphics method [69], which allows us to explore the influence of the number of cameras, camera
positioning, and image resolution on gaze estimation performance in a principled way, 2) 280,000 real eye
images recorded with a first prototype implementation in a laboratory setting with controlled lighting
during a calibration-like procedure, and 3) 240,000 real eye images recorded using a second prototype over
the course of four recording sessions in a mobile setting in which four participants gazed at a physical
targets from various angles. The second dataset will be made publicly available upon acceptance1. We
demonstrate that our approach can achieve a person-specific gaze estimation accuracy of 1.79➦ in the
mobile setting using four cameras with an image resolution of only 5× 5 pixels.

The specific contributions of this work are three-fold: First, we propose a novel approach for mobile eye
tracking that leverages multiple tiny, low-resolution cameras that can be fully and thus invisibly integrated
into a normal glasses frame. Second, we introduce a first-of-its-kind dataset of 280,000 close-up eye images
that have been captured from multiple views and that are annotated with corresponding ground-truth
gaze directions in both a stationary controlled and mobile setting. Third, we present extensive evaluations
of two prototypical implementations of our approach on these datasets plus synthetic data and characterise
their performance across key design parameters including image resolution, number of cameras, and
camera angle and positioning.

2 RELATED WORK

Our work is related to previous works on 1) mobile eye tracking, 2) gaze estimation using multiple
cameras, and 3) datasets for the development and evaluation of gaze estimation algorithms.

1The dataset is available at http://www.mpi-inf.mpg.de/ invisibleeye
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2.1 Mobile Eye Tracking

Many approaches for mobile eye tracking have been explored in the past, including some at low cost [28,
29, 42, 48]. The traditional computational pipeline for mobile gaze estimation involves 1) eye landmark
detection, in particular detecting the pupil center, and ellipse fitting either using special-purpose image
processing techniques [22, 24, 27, 32–34, 57] or machine learning [23], and 2) gaze mapping, traditionally
using a geometric eye model [43, 44, 58, 62] or, more recently, by directly mapping 2D pupil positions
to 3D gaze directions [38]. Instead of using two cameras, Nakazawa and Nitschke relied on only an eye
camera and proposed a geometric approach to estimate gaze using corneal imaging [40]. All of these
video-based methods rely on high-quality eye images and cameras, and therefore all suffer from the
disadvantages discussed in the introduction.
Although a large body of works investigated learning-based gaze estimation, they mostly focused on

remote settings, i.e. settings in which the camera is placed in front of the user, for example under a
display [30, 35, 55, 71]. More closely related to ours is the work by Mayberry et al., who used a subset of
pixels from an eye image to estimate gaze direction with an accuracy of up to 3➦ [39]. However, they still
assumed high-resolution eye images as input, and did not fully explore the potential of the learning-based
approach, in particular in terms of input image resolution. Although Abdulin et al. investigated the
impact of image resolution of an eye camera and found that the iris-diameter resolution should be at least
50 pixels for model-based approaches [2], the minimum image resolution for learning-based approaches has
not been fully investigated in prior work. In contrast, our work is first to utilise multiple low-resolution eye
cameras that can be fully embedded into an ordinary glasses frame in combination with a learning-based
gaze estimation method.

In an attempt to further integrate mobile eye tracking, a smaller number of works investigated alternative
measurement techniques, such as electrooculography (EOG). EOG involves attaching electrodes on the
skin around the eyes to measure the electric potential differences caused by eye movements. While EOG is
computationally light-weight compared to video-based approaches, and thus promises full and low-power
integration [11, 12, 37], due to drift and a low signal-to-noise ratio EOG is only suited for measuring
relative movement of the eye. Borsato et al. instead used the sensor of a computer mouse to track the
episcleral surface of the eye (the white part of the eye) using optic flow [8]. Using this approach they
reported an accuracy of 2.1➦ of error at a 1 kHz sampling rate. However, the tracking was lost during
every blink and the system had to be recalibrated each time, rendering it impractical for actual use. A
few other works explored the use of phototransistors for mobile eye tracking that can, potentially, be fully
integrated into a glasses frame. For example, Ishiguro et al. used infrared illumination in combination with
four infrared sensitive phototransistors attached to a glasses frame to record relative movement of the
eyes [26]. Their use of phototransistors allowed for a fairly compact, occlusion-free, and low-power design
but the proposed system was only evaluated in a usability study without a quantitative analysis. With
the goal of obtaining actual gaze estimates, Topal et al. used up to six infrared sensitive phototransistors
per eye and trained a support vector machine to regress the gaze point from the signals achieving an
average angular error of about 0.93➦ [61]. However, their evaluation was also limited to a constrained
laboratory setting.

2.2 Multi-Camera Gaze Estimation

Several previous works investigated the use of multiple cameras for head pose estimation as a proxy to
gaze, or gaze estimation directly. For example, Voit and Stiefelhagen equipped a room with multiple
cameras to track horizontal head orientation of multiple users and, eventually, estimate who was looking
at whom [66]. As a follow up work of [46], Ruddarraju et al. presented a method for detecting gaze in
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interaction [47]. Head pose was used to estimate a user’s eye gaze and to measure if a user was looking at
a previously defined region of interest. Utsumi et al. estimated users’ head pose to choose the best out of
multiple remote cameras positioned around the user to estimate gaze [64]. Arar et al. proposed a general
framework for gaze estimation using multiple cameras placed around a computer screen by computing
a weighted average of the estimations of each individual camera [4]. While all of these works explored
multi-camera gaze estimation in remote settings, also using learning-based methods, our work is first to
explore this approach for mobile eye tracking.

2.3 Gaze Estimation Datasets

In computer vision, but increasingly also in other fields, the availability of large-scale, annotated datasets to
develop and evaluate learning-based methods has emerged as a critical requirement. Consequently, recent
years have seen an increasing number of datasets being published, including for mobile gaze estimation.
Swirski et al. presented a small dataset of 600 eye images recorded with a head-mounted camera, but
the dataset only covered a single camera view and offered no variability in terms of participants or
lighting conditions [57]. Tonsen et al. and Fuhl et al. provided large and challenging datasets with a lot
of variability in personal appearance and illumination conditions but they, too, only included single-view
recordings of one eye [22, 60]. While an ever-increasing number of datasets have been proposed, all of
them target the tasks of pupil detection and ellipse fitting. To the best of our knowledge, none of the
existing datasets offers ground truth gaze directions in addition to the eye images, thus limiting their use
for developing and evaluating mobile gaze estimation pipelines. In contrast, we present the first-of-its-kind
large-scale dataset of eye images that have been captured from multiple views and that are annotated
with corresponding ground-truth gaze directions in both a stationary controlled and mobile everyday
settings.

With the goal of reducing the time and effort required to record and annotate gaze estimation datasets,
a relatively new line of work is exploring means to instead render highly realistic and perfectly annotated
eye images using computer graphics techniques. Two representatives of this line of work are the methods
by Swirski and Dodgson [59] as well as SynthesEyes and UnityEyes by Wood et al. [68, 69], the latter of
which was more recently extended into a fully morphable 3D eye region model [67]. While both methods
allow synthesis of annotated eye images for different camera positions, they differ in that [68] uses a
more realistic eye region model and can simulate different lighting conditions. We therefore opted to use
UnityEyes for part of our evaluation.

3 MULTI-VIEW LOW-RESOLUTION MOBILE EYE TRACKING

The goal of this work is to design a fully-integrated, invisible eye tracking device. As illustrated in Figure 1,
our proposed system consists of eye cameras fully embedded into ordinary eyeglasses. While the scene
camera is still expected to have higher resolution, the eye cameras are expected to be built with tiny
low-resolution imaging sensors. Since the use of low-resolution and low-quality eye images leads to a
fundamental difficulty in employing the conventional mobile eye tracking approaches through, e.g., eye
landmark detection, we further propose to take a machine learning-based approach for gaze estimation.
Here, the specific technical challenges are: 1) whether such tiny imaging sensors are available, and 2)
what is the minimum image quality and resolution, as well as the minimum number of sensors, required
for mobile learning-based gaze estimation. Considering previous works that have used individual photo
transistors for gaze estimation [26, 61], in this work we explore eye image resolutions as low as 1 × 1
pixels.
In terms of sensor footprint, millimetre-size RGB cameras are available on the market mainly for

medical imaging purposes such as endoscopy. Figure 2 shows a fully integrated prototype of our proposed
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Fig. 2. Fully integrated version of InvisibleEye consisting of multiple, millimetre-size Awiba NanEye RGB cameras
(marked in red) that are invisibly integrated into an off-the-shelf glasses frame. For our evaluations we developed two
other prototypes to be able to characterise performance across key design parameters, including image resolution and
number of cameras, as well as camera angle and positioning, and to compare with a state-of-the-art (high-resolution)
mobile eye tracker.

Merge
512

FC
512

Output

FC
512

Input-1

FC
512

FC
512

Input-2

FC
512

FC
512

Input-n

..
.

Fig. 3. Overview of the neural network used in our work for learning-based gaze estimation. The network takes multiple
low-resolution eye images as input. Each image is encoded using two fully connected (FC) layers and image-specific
representations are then merged to jointly predict gaze direction in scene camera coordinates (red cross).

system using an off-the-shelf glasses frame and medical-purpose millimetre-size cameras. In this prototype
and one of the following experiments, we used the Awaiba NanEye camera which has a footprint of only
1×1 mm [51]. As can be seen, this hardware concept using tiny eye cameras enables extremely unobtrusive
design. In addition, to compensate for both low image quality and limited visibility of non-adjustable
embedded cameras, we further propose to use multiple low-resolution eye images as input to the gaze
estimation pipeline.
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3.1 Neural Network for Multi-View Gaze Estimation

As discussed above, we propose to take a machine learning-based gaze estimation approach. Using a set
of training (calibration) eye images associated with ground-truth gaze positions in the scene camera, our
system trains a gaze estimation function that can directly output gaze positions from arbitrary input
eye images. Prior work on remote appearance-based estimation already demonstrated that, in the ideal
case, only a 15-dimensional feature representation (eye image of 3× 5 pixels) is sufficient to achieve less
than one degree of accuracy [35]. Inspired by such prior attempts, in this work we examine the machine
learning pipeline assuming low-resolution cases.

We use an artificial neural network as illustrated in Figure 3 to learn a mapping from low-resolution eye
images to gaze positions. We assume the existence of training (calibration) data from the target user, and
train a person-specific mapping function for each user. Unlike prior work [5], our method takes multiple
eye images obtained from the tiny wearable eye cameras and learn a joint mapping function from all eye
images. While there is a trade-off between the depth and performance of the neural network, our proposed
network architecture is designed to be sufficiently shallow to reduce training time and inference time at
run-time. Separate stacks of two fully connected layers with 512 hidden units and ReLU activation take
raster-scanned image vectors from each of the N eye cameras as input. The outputs of those stacks are
merged in another fully connected layer with 512 hidden units, and the output is predicted by a linear
regression layer. The network is trained to jointly predict the x- and y-coordinate of the gaze positions,
and the loss function is defined as the mean absolute distance between the predicted and ground-truth
values. We implemented the network using Keras [19] with the Tensorflow [1] backend and chose the
Adagrad algorithm [20] as optimiser with a learning rate of lr = 0.005. We trained our models on a
modern i7-6850K CPU, on which training until convergence took about 1-2 minutes in all cases. At test
time, we achieved ∼ 700 frames per second (FPS) on the same CPU using a single core. When using a
Nvidia GeForce GTX 1080 Ti GPU we achieved up to ∼ 850 FPS. For comparison, for the gaze estimation
pipeline of Pupil Labs [28], a commercial, state-of-the art mobile eye tracker, we achieved only ∼ 270
FPS. These results indicate the significantly smaller amount of computation required for InvisibleEye
and thus its potential for mobile and embedded platforms that have only limited computational power.

4 EXPERIMENTS

To systematically explore the feasibility and performance of InvisibleEye we conducted a series of
experiments on three large-scale and increasingly difficult datasets, two of which we collected specifically
for the purpose of this work. Experiment 1 was conducted in an idealised setting using synthesised
eye images. Synthesising the eye images allowed us to use an arbitrary number of “virtual” cameras in
different positions, which would not be possible when recording with real cameras. For Experiment 2
we implemented a first prototype to record real data in a constraint environment. This allowed us to
control several of the parameters that make mobile gaze estimation difficult, in particular slippage of
the headgear or changes in lighting conditions. Experiment 3 evaluated the performance of InvisibleEye
in a challenging mobile real-world setting using a second prototype. It is important to note that, in all
experiments that follow, the network was trained in a person-dependent fashion, i.e., trained for each user
individually with person-specific training data. In the following, we report on each of these experiments
in turn.
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Fig. 4. (top row) Sample eye images from the original UnityEyes dataset [68] and the corresponding low-resolution
grey-scale images (bottom row) that were used as input to the learning-based gaze estimation method.

4.1 Experiment 1: Evaluation on Synthetic Images

Before constructing the first hardware prototype for InvisibleEye, we opted to investigate the design
space using synthetic eye image data. The goal of Experiment 1 on these synthetic images was to evaluate
the minimum number and positions of cameras.

4.1.1 Data Synthesis. The dataset for Experiment 1 was generated using UnityEyes, a computer
graphics eye region model to synthesise highly-realistic and perfectly annotated eye region images [68].
UnityEyes combines a novel generative 3D model of the human eye region with a real-time rendering
framework. The model is based on high-resolution 3D face scans and uses real-time approximations for
complex eyeball materials and structures as well as anatomically inspired procedural geometry methods
for eyelid animation. Using UnityEyes, we synthesised images for five different eye regions as illustrated
in Figure 4. We used a uniform 5 × 5 grid of camera angles to synthesise the images (see Figure 6a).
The used camera angles span the full range of angles UnityEyes is capable of synthesising, which is a
frontal view as one extreme, and views that are increasingly bottom-up or from the side. Top-down views
were largely occluded by the ridge bone and were therefore not considered here. For each combination
of eye region, camera angle, and lighting condition, we recorded a set of 1,600 different eyeball poses,
corresponding to a uniform 40× 40 grid of gaze angles. The step size in this grid was 1➦, so the dataset
covers a horizontal and vertical field of view of 40➦. Each set was randomly split into a set of 1,280
training images and 320 test images. The images produced by UnityEyes are of high resolution and we
therefore down-sampled them to resolutions below 20× 20 pixels to simulate the images a low-quality
sensor would yield. We also converted them to grayscale to further lower their dimension.

4.1.2 Results. To investigate the difficulty of estimating gaze with extremely low resolution images
and the capabilities of InvisibleEye at this task, we trained different neural networks for different image
resolutions. For a baseline comparison we also computed results using k-Nearest-Neighbours (kNN)
with k = 5. Furthermore, we evaluated all approaches for different numbers of cameras. For the kNN
approach we concatenated the corresponding images of different cameras before training. The results of
this series of experiments are summarised in Figure 5a. As can be seen from the figure, both kNN and
our approach achieve very low gaze estimation error. For example, at 10× 10 image resolution, using
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Fig. 5. (a) Average gaze estimation error for different image resolutions for a k-Nearest-Neighbours approach and our
suggested neural network approach. (b) Gaze estimation error for different numbers of cameras at 5-pixel resolution.
Each bar corresponds to the error of the best combination of x cameras out of 5 randomly selected sets.

a single camera, kNN achieves 0.345➦ error and the neural network achieved 0.078➦. One can also see
that there is little benefit in increasing the resolution of the input images. For both approaches, however,
the figure also shows that the addition of cameras to the system helps to improve the results, especially
for very low resolutions. At 3× 3-pixel image resolution, for example, the result of the neural network
improves from 0.15➦ error to 0.12➦ and 0.1➦ error for two and three cameras respectively, which is an
improvement of 20% and 33%. Figure 5b shows the results for even higher numbers of cameras. As one
can see, additional cameras help to improve performance slightly, but beyond four to five cameras the
error does not significantly decrease any further.

Besides choosing the right number of cameras, another important parameter is the positioning of those
cameras. One would like them to have an informative view but not to occlude the user’s field of view.
Figure 6b shows the error when using every available camera individually. As one can see, frontal views
of the eye yield the lowest error, while bottom-up views are superior to side views. The worst result is
achieved with the highly off-axis view from the very bottom and on the far side.

4.1.3 Discussion. Although the results achieved on synthetic data do not directly translate to the real
world, since the gaze estimation task is a lot easier without real-world noise, the first set of experiments
clearly demonstrates that mobile gaze estimation does not necessarily require high-resolution images.
Further, we found that using multiple cameras can improve performance, but more than three to four
cameras are unlikely to yield significant improvements. These results thus serve as important guidelines
for designing InvisibleEye prototypes, which will be discussed in the following sections. We also found
that frontal views of the eye yield the best results. We believe this is because frontal views have the
least occluded view of the pupil and iris (e.g. with respect to the eyelashes), resulting in more distinct
features for gaze estimation. However, since one of the key attributes of InvisibleEye should be that its
cameras are in non-occluding positions, frontal views are not an option in practice. Since bottom-up
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Fig. 6. (a) The use of synthetic images allows us to explore a wide range of camera angles (25 in this work) in an
efficient and principled manner. (b) Average gaze estimation error in degrees when evaluating for each individual angle.

views and pure side views were the next best options according to these first experiments, we positioned
the cameras in corresponding positions in our prototypes.

4.2 Experiment 2: Evaluation in a Controlled Laboratory Setting

Based on our experiments on synthetic eye images, we built a hardware prototype of InvisibleEye to
evaluate its performance on real images. We conducted the second experiment using this prototype in a
controlled laboratory environment. As discussed earlier, we used Awaiba NanEye cameras to achieve the
small footprint of 1× 1 mm. The NanEye cameras have an image resolution of 250× 250 pixels and can
capture images at 44 frames per second. Although the form factor of this medium-resolution camera is
already sufficient to realise fully invisible mobile eye tracking (see Figure 2), we wanted to explore even
lower image resolutions, i.e. below 20× 20 pixels, which also promises further decreased bandwidth and
computational requirements. We therefore opted to simulate this setting by artificially degrading the
image resolution further.
The prototype was built by attaching four NanEye cameras to a pair of safety glasses. The NanEye

cameras are very fragile and, since they are so small, also difficult to work with. We therefore opted to
use safety glasses as the basis of our prototype, because it allowed us to carefully attach the cameras to
the glass. The number of cameras and their positioning was motivated by the results of Experiment 1, i.e.
two cameras were positioned with bottom-up views of the eye and one camera each was positioned on
the far left and right side of the eye. The cameras were attached using “Blu-Tack”, a reusable putty-like
pressure-sensitive adhesive. Since we attached the cameras to a pair of panoramic safety glasses, their
angles are similar to what they would be in a regular glasses frame. The main difference in the angles is,
that they are further away from the eye than they would be in a regular frame. We compensated for this
by cropping the image by 25% from the center in each direction, which has a similar effect on the image
as moving the camera closer to the eye while reducing the resolution.

4.2.1 Data Collection. We used this first hardware prototype to record a dataset of more than 280,000
close-up eye images with ground truth annotation of the gaze location. Figure 8 shows a few example
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(a)

300px 8px

700ms t500ms
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Fig. 7. (a) Overview of the recording setup used in Experiment 2 with a participant wearing the first prototype and
resting his head on a chin rest. Ground truth gaze targets (marked in black) were shown in the central area of the
screen covering 2 · α of the participant’s visual field (marked in green). The angular error δ (purple) could then be
calculated as the distance between true and predicted gaze targets (marked in orange). On-screen gaze targets were
distributed in a grid and split into training (blue) and test data (red). (b) To increase ground truth accuracy, gaze
targets were shown with a shrinking animation for 700 ms, and then for another 500 ms at the smallest size. Data was
only recorded during the latter 500 ms.

images indicating the positional differences between the cameras and the impacts of cropping and
down-sampling the images. A total of 17 participants were recorded, covering a wide range of appearances:

• Gender: Five (29%) female and 12 (71%) male
• Nationality: Seven (41%) German, seven (41%) Indian, one (6%) Bangladeshi, one (6%) Iranian,
and one (6%) Greek

• Eye Color: 12 (70%) brown, four (23%) blue, and one (5%) green
• Glasses: Four participants (23%) wore regular glasses and one (6%) wore contact lenses

For each participant, two sets of data were recorded: one set of of training data and a separate set of
test data. For each set, a series of gaze targets was shown on a display that participants were instructed
to look at. For both training and test data the gaze targets covered a uniform grid in a random order,
where the grid corresponding to the test data was positioned to lie in between the training points (see
Figure 7a). Since the NanEye cameras record at about 44 FPS, we gathered approximately 22 frames per
camera and gaze target. The training data was recorded using a uniform 24× 17 grid of points, with an
angular distance in gaze angle of 1.45➦ horizontally and 1.30➦ vertically between the points. In total the
training set contained about 8,800 images per camera and participant. The test set’s points belonged to a
23× 16 grid of points and it contains about 8,000 images per camera and participant. This way, the gaze
targets covered a field of view of 35➦ horizontally and 22➦ vertically.

The recording procedure was split into two parts for training and test data. For both parts, participants
were instructed to put on the prototype and rest their head on a chin rest positioned exactly 510 mm in
front of a display. The display was a 30-inch LED monitor with a pixel pitch of 0.25 mm and viewable
image dimensions of 641.3×400.8 mm, set to 2560×1600-pixel resolution. On the display, the grid of gaze
targets was shown, which the participants were instructed to look at. Each point appeared as a big circle
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Fig. 8. (top) Sample eye images from one participant recorded using four NanEye4 cameras. We identify each of the
cameras by the number at the top-left. (bottom) Corresponding cropped low-resolution versions of these images.
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Fig. 9. (a) Average gaze estimation error for different image resolutions for a k-Nearest-Neighbours approach and our
suggested neural network approach on the controlled laboratory data. (b) Average gaze estimation error for different
numbers of cameras at 3-pixel resolution. Please refer to Figure 8 for the camera-label assignment.

300 pixels in diameter and shrunk to a circle of 8 pixels diameter over the course of 700 ms. The small
circle was then displayed for another 500 ms, until the display of the next point started. Data was only
recorded during the latter 500 ms, i.e. while the small circle was shown (see Figure 7a). It is important
to note that the chin rest did not fully restrain participants and we noticed that their head sometimes
moved noticeably, thus resulting in a certain amount of label noise. Using the shrinking animation for the
circle helps the participants to locate the circle on the screen and gives them time to relocate their gaze.
Similar to [30], we also showed an “L” or an “R” in between every 20th pair of points in the sequence.
The letter was displayed for 500 ms at the position of the last point. Participants were asked to confirm
the letter they had seen by pressing the corresponding left or right arrow-key. This was done to ensure
participants focused on the gaze targets and task at hand throughout the recording.
The data is publicly available at http://www.mpi-inf.mpg.de/ invisibleeye.
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4.2.2 Results. We again computed the performance of InvisibleEye for different resolutions and camera
combinations. Figure 9a shows the performance for different resolutions and up to three cameras. Compared
to the synthetic case, one can see that the gaze estimation error is now considerably higher but still
follows a similar distribution as before. Specifically, for resolutions above 5× 5 pixels, the error remains
stable with for example 2.9➦ error for the ANN and 3.52➦ error for kNN with one camera at exactly 5× 5
pixels. These error values are in a range that is low enough for many practical applications like activity
recognition [16] or attention analysis [56]. However, if we consider Figure 9b we can see that additional
cameras do not help for every combination of cameras. Instead, combining cameras that perform worse
individually achieves the biggest increase in performance.

4.2.3 Discussion. We have seen that even for very low image resolutions of only 3×3 pixels, InvisibleEye
is capable of estimating gaze at a low error of 3.86➦ with a single camera and 3.57➦ when combining four
cameras. This shows that gaze estimation at these low resolutions is possible with real-world data at
an accuracy that is practically relevant. These error values further represent an upper bound to what
InvisibleEye can achieve in this setting, due to the label noise in the data. In the following experiment we
will see that, although we move into a more difficult setting, the achieved errors will be even lower since
we do not have as much label noise in the data.

Furthermore, the results suggest that combining multiple cameras does not yield a benefit in every
case but can improve performance markedly when combining cameras that perform badly individually.
Since, in practice, one will always have design constraints on the hardware and a different fit of the
device on every user, one runs the risk of positioning the cameras badly for at least some participants.
The possibility of combining the information from multiple bad cameras is therefore highly relevant in
practice.

4.3 Experiment 3: Evaluation in a Mobile Setting

In the controlled setting, we assumed a display at a fixed distance in front of the user and predicted
gaze in the screen coordinate system. In practice, however, we want to allow users to move around freely
and still be able to track gaze on all kinds of objects, not only displays. Bridging this gap between the
controlled laboratory setting and the real world requires adding a scene camera to the system that records
the user’s field of view and allows us to estimate gaze in scene camera coordinates.

We built a second hardware prototype featuring such a scene camera to test InvisibleEye in a mobile
setting. We also explicitly allowed gaze targets at arbitrary depths. The depth at which a gaze target lies
directly correlates with the location of the target projected into the camera image. From only the view
of one eye, this location in the image is, however, in general not inferable. If, for example, the target
is moved along the gaze ray projected from the recorded eye into the world, the image of the eye will
not change at all if it keeps gazing at the target, while the location of the target in the scene camera
image might change considerably [6]. It is therefore necessary to use views from both eyes to resolve this
ambiguity, which we do by using symmetric pairs of cameras recording both eyes. Further, we explicitly
allow slippage of the headset, which is a problem frequently occurring in practice.

For this second prototype we decided against using NanEye cameras mainly because comparison with
state-of-the-art mobile gaze estimation methods is impossible due to the lower image resolution. We
instead used Pupil Labs cameras [28] to record the eyes and the scene using a custom-built, 3D printed
frame (see Figure 10). Note that, unlike NanEye cameras, the Pupil Labs eye cameras record infrared
images of the eye similarly as most cameras in commercially available eye trackers. The field of view
of the scene camera was approximately 80➦ × 60➦. Please note that although these cameras are slightly
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Fig. 10. (left) Second prototype consisting of a custom 3D-printed glasses frame that can hold up to six Pupil Labs [28]
eye cameras with an additional scene camera. (right) Sample images recorded with the prototype with original image
on the left and corresponding low-resolution counterparts on the right. We identify camera pairs by the number in the
top-left corner.

bigger, they are now located directly in the frame of a pair of glasses, i.e. their viewing angles are exactly
as they should be.

4.3.1 Data Collection. Using this prototype, we recorded another dataset of 240,000 eye images with
four participants (four male, aged between 24 and 38 years). To record gaze data at varying distances in
a mobile setting, a calibration marker was attached to a wall in front of the participants. Participants
were asked to position themselves at an arbitrary distance of up to 3 meters in front of the marker and
to perform a series of head movements while gazing at the marker. The head movements consisted of
continuously moving the head upwards and downwards while rotating it from the far left to the far
right within approximately 10 seconds. Participants were asked to perform the movement such that
the marker would move to the edge of their field of view but always remain visible, so they could gaze
at it. After performing the head movements, participants were asked to position themselves at a new
randomly selected distance for another recording. We repeated this procedure for the whole duration
of the recording session. Additionally, to simulate slippage of the headset that is pervasive in mobile
settings [54], participants were asked to take off the headset and to put it back on after every 6th
recording. Each recording session lasted for about 15 minutes and every participant performed a total of
four sessions. This way we were able to efficiently gather images for gaze angles of a large field of view of
roughly 70× 60➦.
Each eye image was automatically labelled with the position of the calibration marker in the scene

camera. All cameras were set to record images of 640 × 480 pixels resolution at 120 Hz. Per session,
approximately 30,000 images were recorded by each camera. To reduce the required time for training,
we reduced the training set to a random subset of 15,000 images. The data of the first three sessions
was used as training data, while the data of the fourth session was used for testing. Given that the data
was recorded indoors, the images recorded by the infrared cameras were not subject to any significant
changes in lighting conditions.

As before, the images we recorded with this second prototype were of much higher quality than what
we required for InvisibleEye. We therefore down-sampled the images to a lower resolution. We did not
crop the images this time because the cameras were sufficiently close to the eye in this second prototype.
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Fig. 11. (a) Average gaze estimation error for different image resolutions and number of cameras. Also shown is the
performance of a state-of-the-art (high-resolution) mobile eye tracking method. (b) Average gaze estimation error for
every possible combination of cameras averaged across all participants for an image resolution of 3× 3 pixels. Please
refer to Figure 10 for the camera-label assignment.

The images recorded from each camera pair, i.e. one camera from the left side and its symmetrical
counterpart from the right side, were concatenated before the process. Sample images and corresponding
low-resolution versions are shown in Figure 10. For gaze estimation, we used the same neural network
architecture as before.

4.3.2 Results. Because the data recorded with our prototype for the mobile setting was recorded with
high-quality cameras, we first computed a baseline performance using a state-of-the-art gaze estimation
approach based on pupil detection on the original high-resolution images. For this we used the previously
mentioned publicly available pipeline from Pupil Labs [28]. We randomly picked 200 images out of the first
1,650 images recorded for every participant as calibration data. Due to the continuous and random head
movement during recording sessions, the first 1,650 images already cover the entire field of view of the
participant and thus represent a realistic set of calibration images. We picked only images recorded by the
left camera of pair number two, since this camera position is the closet to that of traditional eye trackers.
After detecting the pupil positions in all calibration images, the next step in the Pupil Labs pipeline is
to fit a 7th order polynomial to map the pupil positions to the ground truth gaze positions. Using this
polynomial, we then estimated gaze positions for all other images from the same participant using the
detected pupil position in each image. This baseline method achieved an error of 10.96➦. This high error
is due to the strong slippage of the headset that is present in the data but not being compensated for. By
comparing the positions of one eye corner in a random subset of images, which can be interpreted as an
estimate of this slippage, we found that the average distance to the centroid of all eye corner positions
was 36.3 pixels.

Similar as before, we evaluated the average gaze estimation performance of InvisibleEye for increasingly
lower resolutions as well as the number of used cameras. The results of this analysis are shown in
Figure 11a. As we can see, the curves look similar to corresponding ones in the constraint setting, i.e. for
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resolutions larger than 5× 5 pixels the performance remains stable, whereas it drops for lower resolutions.
At 5× 5-pixel resolution the average error when using all three camera pairs was 1.79➦. The average error
when using only a single camera was 2.25➦. Thus, the use of multiple views of the eye led to a performance
increase of approximately 20%. Figure 11b shows the average performance of every possible combination
of camera pairs across all participants. Here we can see that, in all cases, the addition of a second camera
pair improved the results on average.

4.3.3 Discussion. Experiment 3 has shown that for images recorded using cameras positioned around
the frame, even if using high-resolution images classical approaches based on pupil detection perform badly.
We showed that in contrast, for the same camera positions, InvisibleEye achieves a better performance,
even for image resolutions as low as 3× 3 pixels (corresponding to an error of 2.04➦) using three cameras.
This result shows that InvisibleEye is a viable option even in difficult settings. In this setting we have
also seen that adding more cameras can improve performance. This might indicate that the apparent
camera angles are difficult enough by themselves and that they can complement each other well, as was
the case for cameras 2 and 3 in the controlled laboratory setting.

5 DISCUSSION

In this work we introduced InvisibleEye, a new approach that addresses several key challenges of current
mobile eye trackers. The key novelty of our approach is the combination of small and low-quality cameras
with an image resolution as low as 3× 3 pixels with a method for learning-based gaze estimation. Our
experiments show that despite the very low image resolution, InvisibleEye can still achieve an accuracy
of 2.25➦ at 5× 5-pixel image resolution when using a single pair of cameras in a mobile setting. We have
also shown that using three pairs of cameras capturing different views of the eye can further improve
performance to 1.79➦. The hardware requirements for an embedded system to run InvisibleEye at test
time are also very low. While model training might be feasible on a mobile device, it could be outsourced
to a standard desktop machine or a cloud service too, making InvisibleEye easy to deploy in practice.
These findings are highly encouraging given that they not only demonstrate the feasibility of our approach
but, more importantly, underline its potential for finally realising the vision of invisible mobile eye
tracking. Despite these promising results, our InvisibleEye prototypes still have several limitations. First,
all evaluations shown here are based on person-specific training, i.e. every user needs to record training
data with the device prior to first use. It is important to note, however, that while highly undesirable
from a usability point of view, the requirement for person-specific training or calibration also applies
to state-of-the-art mobile eye trackers that use a classic gaze estimation method and person-specific
calibration. Nonetheless, the amount of person-specific training data currently required for our method is
still significantly larger than the one for standard calibration approaches. Methods from transfer learning
could, for example, be used to reduce the amount of required training data, and it is also promising to
investigate implicit calibration approaches.

The ability to robustly estimate gaze across the large variability in eye appearances of different people
is a significantly more challenging task and thus represents the most important direction for future work.
A less challenging yet still highly practical solution could be eye tracker self-calibration in which gaze
positions are inferred, for example, from saliency maps calculated from the scene camera images [54].
This has the potential to allow the user to gather training data naturally just by wearing the device for
an extended amount of time, thereby continuously improving performance during everyday use.
Second, in this work we have not yet evaluated the performance of InvisibleEye in an outdoor

environment, nor during long-term recordings. Usually, mobile eye tracking systems perform a lot worse
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outdoors because the sun can create intense reflections and shadows on the eye image [60]. It remains to
be explored if a learning-based approach can improve the robustness in such challenging environments.

Finally, while the two prototype systems of InvisibleEye that we have built were sufficient to investigate
its performance in both stationary controlled and mobile real-world settings, a fully integrated mobile
eye tracker that can be used robustly in daily life is still highly desirable. Currently, such full integration
is not possible with the NanEye cameras used in this work, given that they have to be connected to a
desktop computer using a special-purpose USB breakout board. The cameras do use a standard video
interface, however, which makes us confident that fully embedded integration of both hardware and
software will soon be feasible.

6 CONCLUSION

In this work we presented InvisibleEye – a novel approach that, in contrast to a long line of work on
mobile eye tracking, relies on tiny cameras that can be nearly invisibly integrated into a normal glasses
frame. To compensate for the cameras’ low image resolution of only a few pixels, we showed how to
combine multiple of them using a learning-based gaze estimation method that directly regresses from eye
images to gaze directions. We evaluated our system on three increasingly challenging datasets to study
its performance across key design parameters including image resolution, number of cameras, as well
as camera angle and positioning. Our approach achieved a person-specific gaze estimation accuracy of
1.79➦ using four cameras with a resolution of only 5× 5 pixels. These findings are promising and not only
underline the potential of this new approach but mark an important step towards realising the vision of
fully unobtrusive, comfortable, and socially acceptable mobile eye tracking.
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