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Scanpath Prediction on Information
Visualisations

Yao Wang, Mihai Bâce, and Andreas Bulling

Abstract—We propose Unified Model of Saliency and Scanpaths (UMSS)– a model that learns to predict multi-duration saliency and
scanpaths (i.e. sequences of eye fixations) on information visualisations. Although scanpaths provide rich information about the
importance of different visualisation elements during the visual exploration process, prior work has been limited to predicting
aggregated attention statistics, such as visual saliency. We present in-depth analyses of gaze behaviour for different information
visualisation elements (e.g. Title, Label, Data) on the popular MASSVIS dataset. We show that while, overall, gaze patterns are
surprisingly consistent across visualisations and viewers, there are also structural differences in gaze dynamics for different elements.
Informed by our analyses, UMSS first predicts multi-duration element-level saliency maps, then probabilistically samples scanpaths
from them. Extensive experiments on MASSVIS show that our method consistently outperforms state-of-the-art methods with respect
to several, widely used scanpath and saliency evaluation metrics. Our method achieves a relative improvement in sequence score of
11.5 % for scanpath prediction, and a relative improvement in Pearson correlation coefficient of up to 23.6 % for saliency prediction.
These results are auspicious and point towards richer user models and simulations of visual attention on visualisations without the
need for any eye tracking equipment.

Index Terms—Scanpath Prediction, Visual Saliency, Visual Attention, MASSVIS, Gaze Behaviour Analysis.
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1 INTRODUCTION

Despite the importance of human gaze in information
visualisation, for example to study media quality [4] or
visual decision-making [5], existing approaches to quantify
users’ visual attention require special-purpose eye tracking
equipment [6]. However, eye trackers may not always be
available. They have to be calibrated to each user prior to
first use [7], and accurate gaze estimation is limited to con-
fined areas in front of the display [8]. A popular approach to
overcome these limitations is to instead use computational
models of visual attention that can predict attention distri-
butions over an image, such as saliency maps, without the
need for any eye tracking equipment [9]. Saliency modelling
has been widely studied in computer vision [3, 10, 11, 12],
but has also found applications in human-computer inter-
action (HCI), such as for visual analytics [6], optimising
webpage designs [13], and re-targeting and thumbnailing
on graphic designs [4].

Information visualisations are fundamentally different
from natural images: they usually contain more text (e.g.
titles, axis labels or legends) as well as larger areas with
uniform colour and little to no texture (e.g. in bar plots or
pie charts) [14]. These differences have triggered research
into saliency models that are specifically geared to infor-
mation visualisations, such as element-level saliency pre-
diction [15]. However, saliency models are fundamentally
limited in that they cannot predict the temporal dynamics
of gaze behaviour.

Scanpath prediction is the task of predicting the se-
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quence of fixations on an image [14, 16]. In contrast to
saliency modelling, scanpath prediction inherently captures
the stochastic and dynamic characteristics of visual attention
over time. Due to the large variability of human gaze, accu-
rately predicting scanpaths is profoundly challenging [9].
Prior methods for scanpath prediction have focused on
natural scenes consisting of people and objects [17, 18], on
webpages [13] or on graphical user interfaces [19]. To the
best of our knowledge, scanpath prediction on information
visualisations has not yet been explored. Modelling scan-
paths on information visualisations can provide insights
into both the rich spatial and temporal dynamics of hu-
man attention over time. As such, in contrast to saliency
modelling, scanpath prediction can therefore help us better
understand human visual behaviour while observing and
visually processing information visualisations. Moreover,
future work will be able to use our spatio-temporal models
of attention for visualisation quality evaluation [20] or visu-
alisation optimisation [21] without the need for any tedious
and time-consuming eye tracking studies. Scanpath predic-
tion methods on information visualisations can be utilised
as a tool to simulate human attention, which allow user
models and simulations of visual attention on visualisations
without the need for eye tracking equipment.

Since there is currently limited work understanding gaze
behaviour on visualisations, we fill this gap and lay the
foundations for a new line of research on scanpath pre-
diction on information visualisations. Inspired by similar
investigations on natural images [22], we first conduct a sys-
tematic analysis of human gaze on visualisations from the
widely used Massachusetts Massive Visualization Dataset
(MASSVIS) [23]. Specifically, we analyse static and dynamic
fixation density both across different visualisation elements
– such as title, data, axes, or labels – as well as across
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Fig. 1: Our UMSS method can predict human gaze scanpaths, that is, sequences of fixations, on information visualisations.
It uses the Multi-Duration Element Attention Model (MD-EAM), a model for predicting multi-duration element-level
human attention maps, followed by a probabilistic approach for sampling gaze locations across visualisation elements. It
outperforms existing scanpath models [1, 2, 3] in Sequence Score and ScanMatch metrics, and is the preferred scanpath
prediction model by visualisation experts from our user study.

viewers. We find that title and graphical elements receive
a significant amount of attention, particularly at the onset
of the visual inspection process. Afterwards, attention shifts
to other textual elements, such as labels, followed by data-
related components, such as annotations, legends or axes.
Moreover, attention towards objects and data elements is
stable across time.

Informed by these findings, we propose Unified Model
of Saliency and Scanpaths (UMSS) – a method to predict
saliency and scanpaths on information visualisations. The
first stage of our method is the Multi-Duration Element
Attention Model (MD-EAM), which is a novel approach
to predict multi-duration element-level human attention
maps under multiple viewing durations. The second stage
of our method samples scanpaths from the multi-duration
element-level human attention maps in a probabilistic way.
Through extensive evaluations on MASSVIS, we show that
the novel element-wise attention maps and the data-driven
sampling strategy allow our method to generate scanpaths
of significantly better quality than previous methods. More-
over, they consistently outperform state-of-the-art methods
with respect to several widely-used scanpath evaluation
metrics. Our method achieves a relative improvement of
11.5 % in the Sequence Score [18], and is best for the
direction and position dimensions of MultiMatch [24]. In
addition, our method establishes a new state-of-the-art per-
formance on the closely linked saliency prediction task on

MASSVIS. For example, it reaches a relative improvement
of 23.6 % in the Pearson correlation coefficient under a 3-
second viewing duration.

The contributions of our work are twofold. First, we
present a systematic analysis of gaze dynamics on visual-
isation elements and reveal both consistencies across visu-
alisations and viewers as well as structural differences be-
tween different visualisation elements. Second, we propose
Unified Model of Saliency and Scanpaths (UMSS), the first
unified method for predicting multi-duration visual saliency
and scanpaths on information visualisations. Through ex-
tensive evaluations and a user study, we validate the ef-
fectiveness of our method, and report several fundamental
findings of current scanpath metrics.

2 RELATED WORK

Our work is related to previous works on (1) eye tracking
for information visualisations, as well as to computational
models for (2) visual saliency and (3) scanpath prediction.

2.1 Eye Tracking for Information Visualisations

Eye tracking is widely used in information visualisations
and visual analytics [6, 25], given that eye gaze provides
rich information about visual search and visual decision-
making. For instance, Borkin et al. [23] assessed the key
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characteristics necessary to make visualisations recognis-
able. Some other literature have proposed eye-tracking
based visual analytics approaches, such as word-sized vi-
sualisations [26] and under interactive visualisations [27].
These works demonstrated the importance of eye tracking
as a means to better understand gaze behaviour while view-
ing static as well as a component of visual analytics tools
for dynamic information visualisations. However, while eye
trackers have become cheaper and more readily available,
they are still far from being pervasive, and have to be
calibrated to each user before first use [7], and often suffer
from inaccuracies in everyday settings [28].

2.2 Computational Modelling of Visual Attention

Another line of work have addressed the limitation of eye-
tracking equipment by proposing computational attention
models. Visual attention modelling, also known as saliency
modelling, is a highly active research area in computer
vision. Itti et al. [10] proposed one of the first bottom-
up-models, that is, models that only consider visual fea-
tures from a scene or image. Since then, with large-scale
annotated data from natural scenes becoming more easily
available [29, 30], several works have shown significant im-
provements in visual attention modelling [30, 31, 32]. Multi-
Duration Saliency Excited Model (MD-SEM), a method to
capture attention at multiple viewing durations [22], is the
first method to provide insights into how human atten-
tion changes over time. It bridges statistical-level saliency
and individual-level scanpath. However, MD-SEM was pro-
posed for natural images. Therefore, we first have to test the
performance of it on information visualisations.

Saliency models are not only useful to model human
visual attention on natural scenes but also more broadly
applicable, such as to information visualisations [14], web
pages [5, 33], mobile user interfaces [15, 34], or graphical
user interfaces [19]. An increasing number of works have
explored attention models in the context of information
visualisations [14, 35]. Matzen et al. [14] proposed the data
visualisation saliency (DVS) model that integrates bottom-
up saliency maps of the Itti-Koch [10] model with text-
region maps. In follow-up work, the same authors showed
that attention towards outliers in data visualisations is
heavily influenced by the task [36]. Complementing the
notion of saliency, others have proposed visual importance
as a concept to model the level of importance of different
visualisation elements [4, 37]. Fosco et al. [21] proposed
the Unified Model of Saliency and Importance (UMSI) –
a method to predict importance maps across five types
of graphic designs, including infographics, movie posters,
mobile user interfaces, advertisements and webpages.

2.3 Scanpath Prediction

Models of visual attention only provide aggregated statis-
tics, which has triggered research into the complementary
task of scanpath prediction, that is, the task of predicting a
sequence of fixations over a visual stimulus [10]. Scanpath
prediction has been studied on different types of visual
stimuli such as natural scenes [18, 38, 39, 40], virtual reality
environments [41, 42], and graphical layouts [43]. Scanpath

prediction is even more challenging given that fixation loca-
tions vary a lot across viewers [1]. Early work on scanpath
prediction has typically used bottom-up saliency maps to
predict gaze shifts [44, 45]. Other models have incorporated
cognitively plausible mechanisms, such as inhibition of
return [10, 46, 47] or foveal-peripheral saliency [3, 16, 48].
Boccignone et al. [9] have created a three-stage process-
ing model with a centre-bias, a context/layout and an
object-based model to predict scanpaths on natural scenes.
Scanpath prediction under object detection [17, 49], visual
search [18], or visual question-answering [50] is solved by
reinforcement learning. Islam et al. [51] have proposed a
multitask-learning framework for segmentation and scan-
path prediction and showed that this approach can take
advantage of a segmentation task. HMM-based scanpath
prediction methods either split an image into several grids
and regard each grid as a single state of observation [39], or
classify the fixations into several states [38].

Large-scale datasets [29, 30] have paved the way for
the use of deep learning methods for scanpath prediction
on natural images. Saltinet [1] has extended saliency maps
to saliency volumes, from which sample scanpaths were
created. Kümmerer et al. [52] proposed the DeepGaze III
model that allowed them to predict next fixations from
saliency maps and previous scanpaths. PathGAN [2] was
the first end-to-end model that relied on a generative adver-
sarial network (GAN) for scanpath prediction. It combined
a VGG network [53] to encode the image with an LSTM-
based generator to predict scanpaths as well as a discrimi-
nator to distinguish the generated scanpaths from the real
ones. Since insufficient gaze data are collected on visuali-
sations, not surprisingly, no deep learning-based scanpath
prediction model is designed for information visualisations.
Therefore, it is essential to understand gaze behaviour on
information visualisations and apply key findings to our
model to alleviate the data scarcity problem.

3 ANALYSING GAZE BEHAVIOUR ON INFORMA-
TION VISUALISATIONS

Although eye tracking has been widely used in information
visualisation research, the ways in which viewers look at
visualisations remain under-explored. While several works
have investigated eye movements on visualisations [23, 54],
they have been limited to statistical results, rather far from
revealing gaze dynamics. To shed more light on gaze dy-
namics while viewing information visualisations and to
inform the design of our method for scanpath prediction,
we conducted fundamental analyses on the Massachusetts
Massive Visualization Dataset (MASSVIS).

3.1 The MASSVIS Dataset

MASSVIS [23, 55] consists of more than 5,000 static infor-
mation visualisations and, as such, is one of the largest
and most widely used datasets. It covers various types
of visualisations, such as government reports, infographic
blogs, news media websites, and scientific journals, and
provides detailed annotations of visual elements, such as
titles, data, axes and legends. The dataset also provides
gaze data recorded from human viewers for a subset of 393
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Fig. 2: Element fixation density of visual elements over
time on the MASSVIS dataset in a 0.5-second bin. Title and
Graphics draw a substantial amount of attention in the be-
ginning (top), then attention shifts to other textual elements
(Label and Source etc.), and data-related elements, (Anno-
tation, Legend and Axis) (middle). Meanwhile, attention
towards Object and Data is consistent across time (bottom).

visualisations. Gaze data was collected during a memora-
bility task that involved two phases: in the encoding phase,
viewers were given 10 seconds to memorise each visual-
isation. In the following recognition phase, viewers were
asked to recognise the visualisation within two seconds.
Given that the visualisations were shown only 2 seconds
for the recognition stage, we only analysed visualisations
and gaze data in the encoding stage. The gaze data from
the encoding stage were collected from 33 viewers and 16.7
viewers per visualisation. The mean scanpath length on this
data was 37.4 fixations (σ = 6.64) with a maximum of 55
fixations and the mean duration of 219.17 ms (see Figure 1 in
supplementary material for fixation duration distribution).
The element taxonomy and annotations were derived from
MASSVIS [23]. The first fixations were discarded in every
scanpath due to the experimental setting, where a fixation
cross showed up right before the image appeared on the
screen [23] (see Figure 2 in supplementary material). Re-
garding fixations that landed on white spaces, we followed
a similar procedure to prior work [56] and removed 12.2%
of total fixations that did not land on any visual elements.

3.2 Fixation Density on Visual Elements

Compared to natural images, information visualisations
often contain larger areas with uniform colours as well as
small, yet important, areas such as text [14]. It is therefore
conceivable that, in addition to their information content,
the relative saliency of individual visual elements influences

if and when they are being looked at during the execution
of a scanpath. It currently remains unclear, however, how
salient different elements are overall as well as relative to
each other. Furthermore, it is also unknown whether human
attention is evenly distributed over a particular element
over time or whether it changes as a function of when the
visualisation element is more attractive. In the theory of
visual world paradigm [57, 58], the proportion of fixations
on each target is plotted over time to show how visual
attention shifts to different items in a scene during the
comprehension of spoken language. However, it requires
each target to have a similar size, making it not applicable
in information visualisations.

Inspired by this, we propose the Element Fixation Den-
sity (EFD) measure to quantify how visual attention evolves
in arbitrary size of visual elements. EFD is defined as
the accumulated number of gaze fixations divided by the
covering area of fixation targets [59]. Derived from the term
“Fixation Density” introduced by [59], the fixation target
in EFD is set to the sum area of one kind of visualisation
element, such as title, data, and legend. Inspired by previ-
ous attention dynamics analysis [22], we used k-means to
cluster the elements that have similar attention dynamics.
The distance of two elements x and y is calculated as
dxy =

∑
t
|EFDx(t) − EFDy(t)|, t for every 0.5 seconds.

Figure 2 shows the EFD of visual elements over time in a
0.5-second bin (x-axis, 0 – 10 s), clustered into three groups
by the k-means algorithm. As can be seen from the figure,
Title and Graphics draw a substantial amount of attention in
the beginning, then attention shifts to other textual elements
(Label and Source etc.), and Data-related elements (Annota-
tion, Legend and Axis). Meanwhile, attention towards Object
and Data is consistent across time. See Figure 4 in supple-
mentary material for example visualisations with annotated
semantic regions. In the following paragraphs, we discuss
when an element attracts attention in visualisations in detail.

Text (Title, Source etc., Paragraph, and Label). Previous
work reported the bias of human attention towards text
regions [14] but did not reveal the temporal preference of
text elements. Figure 2 shows that most text elements (Title,
Paragraph, Label) receive a large EFD. For text categories that
are not directly related to data, such as Title and Paragraph,
the attention first increases but then reaches a peak at 0.5 –
2.5 s. This suggests that viewers tend to examine these
regions at the very beginning of observation, which is in
line with previous analyses on the time to first fixation of
different elements [60]. Then, the interest in these elements
decreases afterwards, especially for Title. Data-related text
elements such as Label and Source etc. reach the peak around
5.5 – 7s. The highest EFD across all elements appears in Label.

Data and Data-related Elements. Figure 2 shows that data-
related elements (Legend, Annotation and Axis) have lower
EFD than Legend, while the interest towards Legend is as
great as for Title after 4 s. Data areas cover more than half
of all pixels in visualisations [23] but their EFDs are the
lowest among all elements. The attention towards Data
decreases over 1 – 2 s, then gradually increases. This pattern
also appears in data-related elements, and we notice the
interest stays undiminished for an extended period. Legend
reaches its peak around 2.5 s, and it stays at a high level of
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Fig. 3: Human gaze transition matrices under three different viewing durations. Left: First 3 seconds. Middle: From 3 to
5 seconds. Right: From 5 to 10 seconds. Viewers tend to look at Title and Legend continuously before jumping to other
regions, while they tend to read Data in cooperation with Annotation, Axis, Legend and Source etc.. A: Annotation, X:
Axis, G: Graphics, L: Legend, O: Object, T: Title, S: Source etc., D: Data.

EFD until 6 s. Attention towards Annotation and Axis starts
to grow at 4 s, and remains at a high level until 7 s. We find
the peak of Data occurs around 6 s, which agrees with the
trend of data-related elements. These findings suggest that
viewers usually examine the Title in first glances, then pay
attention to data-related elements. Around 5 – 7 s, viewers
tend to observe visualisations by alternating between Data
and descriptive elements.

Object. Objects are “either realistic photographs or ab-
stract drawings or pictograms that can be recognised by
human” [23]. Object persistence is a well-known recognition
process [61]. We find that attention density within Object
is comparatively low in memorability tasks. Even though
Object takes 7.67 % of image space pixel-wise, the fixations
make up only 2.16 %. The attention pattern towards Object
is very similar to Data, which reaches the lowest EFD at 1 –
1.5 s and then peaks at 5 –7 s. We suggest this pattern may be
caused by the well-known Inhibition of Return (IOR) [10].
Since Object contains relatively limited information com-
pared to textual elements, viewers tend to postpone their
attention towards the entire Object regions for a later time.
After the effective period of IOR, the interest towards Object
increases again.

3.3 Attention Dynamics for Individual Viewers
Our analyses so far focused on the temporal dynamics of
gaze on visualisations across all viewers. However, it is
well-known that, in general, gaze behaviour contains not
only person-independent but also person-specific informa-
tion [62]. We therefore analysed the individual scanpath
trends of 10 viewers in MASSVIS, where all viewers ob-
served at least 75% of all 393 visualisations. In subsec-
tion 3.2, we reported attention dynamics patterns for every
kind of element. For a better understanding of attention
dynamics, we merged the four text elements that have the
same dynamic patterns into one. The final eight types of
visual elements are A: Annotation, X: Axis, G: Graphics, L:
Legend, O: Object, T: Title, S: Source, paragraph, label, and header
row text, denoted as Source etc., D: Data.

Sequence Score. We reported that attention dynamics
towards elements are consistent across visualisations and

Fig. 4: Two statistical results of attention dynamics across
viewers in MASSVIS [23]. Left: Sequence Score [18] of scan-
paths. Right: Kullback-Leibler divergence of human gaze
transition matrices. Individual participants are denoted as
p0 – p9. It shows substantial similarities in fixation distribu-
tions between most participants (right), but the scanpaths
vary a lot from each other (left).

viewers, but the individual-level analysis is the key to un-
derstanding scanpaths. Therefore, we converted a scanpath
to a sequence of letters by assigning each fixation to a
unique letter based on the element at which it was drawn.
We used the Sequence Score [18] to quantitatively examine
how similar scanpaths are within viewers. To compute
the Sequence Score, the Needleman-Wunsch algorithm [63]
was used to calculate the minimum number of operations
needed to change one string into another. Each mismatch
or gap between two strings penalises the final score. We
observed a low similarity of Sequence Score within viewers
in Figure 4, left, which means different viewers observe the
same visualisation in quite different ways. Moreover, the Se-
quence Score within the first 5 seconds was also calculated.
However, to our surprise, the Sequence Score within the
first 5 seconds was even slightly lower than for the entire
10 seconds. This may suggest that the attention dynamics in
the early observation period are more unstable than in the
late observation period.

Transition Matrix. To give a panoptic view of individ-
ual attention dynamics on visualisations across images,
we adopted the concept of transition matrix from Hidden
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Markov Models to describe gaze shifts. We computed the
transition matrix of fixations in scanpath strings. Each letter
in scanpaths was considered a hidden state, and changes be-
tween neighbour letters were state transitions. The average
transition matrices across all viewers within three different
durations are demonstrated in Figure 3, that is, before 3 s, 3 s
to 5 s and from 5 s to 10 s. The diagonal values of the transi-
tion matrices stand for self-transition, which means the next
fixation stays in the same kind of element as the previous
fixation. The highest self-transition appeared in Legend (L),
while Title (T) comes second. It indicates that people tend
to keep reading legends and titles before jumping to other
regions. The lowest self-transition appears in Objects (O)
and Data (D). It indicates that people alternately read these
regions or only glance at these regions rather than focus on
them. We also found some consistent attention dynamics
for elements. The gaze shifts from the Data are more likely
shifting to Annotation (A), Axis (X), Legend (L) and Source
etc. (S). The transitions from X to L, from T to G, and T to L
are also relatively high. We also observe consistent attention
dynamics across viewers under transition matrices. To quan-
tify the similarity of individual dynamics, we computed the
Kullback-Leibler divergence (KL) within ten viewers (see
Figure 4, right). The lowest KL of 0.023 and the highest KL
of 0.827 demonstrated substantial similarities of attention
dynamics across individuals. It suggests that the individual-
level attention dynamics of viewing information visualisations are
consistent with those on the element level.

4 UNIFIED MODEL OF SALIENCY AND SCANPATHS
(UMSS)
Our analyses yielded several insights that are important
when designing a method for predicting scanpaths on in-
formation visualisations. We found that Title and Graphics
receive a significant amount of attention, particularly at the
onset of the visual inspection process. Afterwards, attention
shifts to other textual elements (Label and Source), followed
by data-related components (Annotation, Legend and Axis).
Moreover, attention towards Object and Data is consistent at
a stable level across time. Specifically, we found that though
gaze patterns across viewers are highly consistent, individ-
ual scanpaths show significant variability. Taken together,
these characteristics render the task of scanpath prediction
particularly challenging. We therefore designed our Unified
Model of Saliency and Scanpaths (UMSS) with the specific
goal of preserving this stochastic nature of fixations within
a scanpath. Our method combines two original contribu-
tions towards this goal: a Multi-Duration Element Attention
Model (MD-EAM) that builds on the architecture of MD-
SEM [22] but better preserves element-level spatial informa-
tion, as well as a probabilistic approach to sample scanpaths
from these attention maps. Figure 5 gives an overview of
our method.

4.1 Multi-Duration Element Attention Model (MD-EAM)

Our analyses showed that attention dynamics on visual-
isation elements are large, which indicated that different
elements are salient under different durations. From our
analysis, we found out that where viewers tend to focus

on a visualisation depends on how long they have been
observing it (see Figure 2). Thus, a single saliency map is not
representative enough to describe the gaze dynamic over
time. MD-SEM [22] is the first and currently state-of-the-art
method to model multi-duration saliency, that is, a model
that can predict saliency maps for different viewing dura-
tions. The model learns temporal attention dynamics using
a three-branch weight-sharing network, and predicts the
attention distribution for a certain duration in each branch.
From our perspective, there are two main drawbacks of MD-
SEM: 1) Saliency dispersion to white spaces; and 2) lack of
spatial information, such as element bounding boxes.

Thus, we leverage the above drawbacks by fine-tuning
MD-SEM on element fixation density maps. As subsec-
tion 3.2 defines, the EFD of an element is calculated by
the accumulated fixations divided by the element area. We
assign the element EFD as the uniform value to all pixels
in that element, and truncate fixations to three continuous
observation periods (e.g. 0 – 0.5 s, 0.5 – 3 s, and 3 – 5 s). We
denote these EFD maps as MASSVIS Multi-Duration Ele-
ment Fixation Density (MASSVIS-MDEFD), and the fine-
tuned MD-SEM model as MD-EAM. Thus, we leverage the
above drawbacks by fine-tuning MD-SEM on the MASSVIS-
MDEFD dataset. MD-EAM shows better capacity in pre-
serving element-level attention distribution (see Figure 5 in
supplementary material).

4.2 Probabilistic Scanpath Sampling

Previous work has reported that recurrent layer-based net-
works regressed to the image centre in scanpath predic-
tion [1], which also occurred on information visualisations.
To tackle the centre-regress problem, we propose a proba-
bilistic sampling method to generate realistic scanpaths.

Duration Prediction. Previous literature [64] reported that
the fixation duration is stimuli-dependent, and is close to the
exponentially modified normal distribution (ex-Gaussian).
In our method, we first estimate the ex-Gaussian param-
eters from training data, and sample durations from the
distribution. We follow this strategy to estimate the three
parameters, µ, δ, and τ for the ex-Gaussian distribution.

Slice Allocation. The scanpath length and durations were
sampled from the distribution of the training data [1], while
the number of fixations in each slice of the attention map of
MD-EAM is based on fixation timestamps. As shown in Fig-
ure 5, the probability-based algorithm randomly samples
fixations from multi-duration element attention maps. With
prior knowledge of the length and duration of the scanpath,
we can easily decide how many fixations are in each slice
of the attention map. Inspired by Saltinet [1], each slice of
attention maps is regarded as a probability distribution, and
the first position X0 in each slice is randomly sampled from
the attention map.

To mimic gaze shift, we create a foveal mask Mn by
multiplying the allocated slice of the attention map with
a Gaussian kernel centred at the fixation position Xn. Then,
the next fixation position Xn+1 stays in the foveal region of
Mn (see Algorithm 1). This process will continue multiple
times in each slice of the attention map. The final scanpath
is generated by concatenating fixations from all slices of
attention maps.
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xn,yn,Durn

Sampling Process

Element Attention Map

xn+1,yn+1

Multi-Duration Element 
Attention Maps

Visualisation Predicted Scanpath

MASSVIS-MDEFD Probablistic Choice

MD-EAM

Sample

Durn+1

Slice Allocation

Fig. 5: Overview of our method for probabilistic scanpath prediction on information visualisations. Multi-Duration Element
Attention Model (MD-EAM) is fine-tuned by the MASSVIS Multi-Duration Element Fixation Density (MASSVIS-MDEFD)
dataset, and generates multi-duration element attention maps for saliency prediction. The duration is sampled from the
ex-Gaussian distribution estimated from the MASSVIS training set. The Element Attention Map is selected by timestamp.
Then, fixations are sequentially sampled from the selected map by probabilistic choice.

Algorithm 1 Foveal Attention Shift Algorithm
1: procedure FIXATIONSAMPLING(Xn,Mn)
2: dur = SampleF ixationDuration(µ, δ, τ) .

Randomly sample a duration from the ex-Gaussian dis-
tribution

3: while current timestamp in range do
4: Find the current slice AttMap
5: Xn+1 = ProbablisticChoice(AttMap ·Mn)
6: Mn+1 = Gaussian(Xn+1)
7: return Xn+1,Mn+1

5 EXPERIMENTS

We carried out a series of experiments to compare the
performance of UMSS with state-of-the-art saliency and
scanpath prediction methods. Different ablated versions of
the method itself were also evaluated.

5.1 Dataset

Since the provided fixations in the SALICON dataset [30]
lacked timestamps, we retrieved fixation duration by ap-
plying the IDT (Identification by Dispersion Threshold)
algorithm [65] on raw gaze data to prepare the SALICON-
MD (Multi-Duration) dataset. We truncated fixations in
MASSVIS [23, 55] to the first 5 seconds to make fair
comparisons with baseline methods. MASSVIS-MD (Multi-
Duration) is a dataset created according to the following
gaze timestamps: 0 – 0.5 s, 0.5 – 3 s, and 3 – 5 s. We used this
dataset to fine-tune MD-SEM [22] on information visualisa-
tions as a baseline. Then, we prepared MASSVIS-MDEFD
from the element annotations of MASSVIS [23] with the
same durations as MASSVIS-MD for training MD-EAM. To
validate the generalisability of our model, we wanted to
created train and evaluation sets that are balanced w.r.t.
the source and visualisation type. Based on the naming
convention of each sample from the MASSVIS dataset, we
sorted all the files by name and selected every sixth file
for the evaluation set. This assures the evaluation set is

balanced by both source and visualisation type. More details
are available in Table 2 in supplementary material. All
evaluations on MASSVIS followed the same split policy.

5.2 Implementation Details & Model Training

The MD-EAM model was fine-tuned on MASSVIS-MDEFD
for 6 epochs starting from the official CodeCharts1K weights
of MD-SEM [22]. We preserved the original saliency maps
at 0.5 s duration to supervise the MD-EAM branch to align
to the centre bias phenomenon that appeared in the first
fixations of human gaze data (see Figure 2 in supplementary
material). For the other two branches of MD-EAM, we
employed the MASSVIS Multi-Duration Element dataset
at 3 s and 5 s. For duration estimation, the parameters of
the ex-Gaussian distribution were computed as µ= 124.06,
δ = 17.49, and τ = 89.37. All experiments were conducted on
a single NVIDIA Tesla V100 GPU with 32 GB VRAM. See
supplementary material for the training details.

For saliency prediction, we fine-tuned the MD-SEM
model on MASSVIS-MD for six epochs starting from the
official CodeCharts1K [22] weights. DVS [14] was used as-is
to predict saliency maps on MASSVIS. For scanpath predic-
tion, we trained PathGAN [2] on SALICON [30] and fine-
tuned it on the MASSVIS dataset [23]. We used the official
implementation of Saltinet [1] as-is to predict scanpaths on
MASSVIS. For DCSM [3], we were in contact with the corre-
sponding author who sent us all the predicted saliency maps
and scanpaths – their codebase is not available publicly.

5.3 Scanpath Prediction

Since there is currently no scanpath prediction method
for information visualisations, we compare our method to
three state-of-the-art methods for natural scenes: DCSM [3],
PathGAN [2] and Saltinet [1].

Metrics. Generated scanpaths were compared to hu-
man scanpaths using several evaluation metrics. We
chose the five most currently used metrics to quantify
the scanpath performance: Sequence Score [18], Dynamic
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TABLE 1: Quantitative evaluation on MASSVIS for a 5-second ground truth in terms of Sequence Score (SS), Scanmatch,
scaled Time Dimension Embedding (sTDE), Dynamic Time Warping (DTW) and MultiMatch metrics (shp: shape, dir:
direction, len: length, pos: position, dur: duration). Best results are shown in bold, second best are underlined. Stars
indicate statistical significance of the difference between Ours and MD-SEM (**: p < .01; ***: p < .001).

Methods SS ↑ ScanMatch ↑ sTDE ↑ DTW (2D) ↓ MultiMatch ↑
mean best mean best mean best mean best shp dir len pos dur

Human 0.584 0.651† 0.532 0.645† 0.924 0.943† 5311.23 3433.68† 0.958 0.800 0.952 0.818 0.730

PathGAN [2] 0.390 0.503 0.232 0.255 0.910 0.937 6840.86 4495.89 0.974 0.671 0.964 0.767 0.691
DCSM [3] 0.400 0.580 0.328 0.458 0.879 0.908 6395.57 4292.44 0.924 0.724 0.902 0.756 0.755
Saltinet [1] 0.388 0.676 0.331 0.451 0.875 0.876 12758.51 10546.33 0.887 0.689 0.842 0.684 0.708
UMSS (ours) 0.446∗∗∗ 0.724∗∗ 0.387∗∗∗ 0.503∗∗∗ 0.906 0.925 6529.11 4683.44 0.943 0.728 0.935 0.771 0.712

† Scanpaths are not compared with themselves

Time Warping (DTW) [66], scaled Time-Delayed Embed-
ding (sTDE) [67, 68], ScanMatch [69] and MultiMatch [24].
For Sequence Score, ScanMatch, DTW and sTDE, the mean
and best evaluation scores were reported. While the mean
evaluation scores are the averages of all human and pre-
dicted scanpath pairs, the best evaluation scores are the
maximum of all pairs for each prediction [50, 70].

• Dynamic Time Warping (DTW). DTW calculates an
optimal match between two given sequences with
specific rules, with smaller values indicating better
performance [71]. In this paper, we computed DTW
in two-dimensional position coordinates.

• Scaled Time-Delay Embedding (sTDE). Time-delay em-
bedding similarity refers to the inclusion of historical
information in dynamic system models [72]. It is a
value between 0 (worse) and 1 (better).

• ScanMatch. ScanMatch [69] is a patch-based similar-
ity approach inspired by the Needleman–Wunsch
algorithm [63]. It is a value between 0 (worse) and
1 (better). In this paper, we set no time bin for
ScanMatch to ignore duration.

• Sequence Score (SS). The Sequence Score is normalized
between 0 and 1. A detailed definition of Sequence
Score can be found in subsection 3.3.

• MultiMatch. MultiMatch [24] is a multidimensional
vector-based approach. After the alignment of vector
shapes, the length, position, direction, and duration
of fixations are computed. All the obtained values are
normalised between 0 (worse) and 1 (better).

Results. Table 1 summarizes quantitative results on scan-
path prediction for a 5-second ground truth. Metrics be-
tween real viewers on the same images are used as a golden
standard of scanpath quantification, which is denoted as
Human in Table 1. Our method ranks first in Sequence
Score, ScanMatch, MultiMatch-direction, and MultiMatch-
position, and second in MultiMatch-shape, MultiMatch-
length, and sTDE. For DCSM, only one prediction for
each visualisation is generated. For PathGAN, Saltinet and
UMSS, we generate the same number of predictions as
human scanpaths for each visualisation (16.7 per visuali-
sation). PathGAN and Saltinet are evaluated by conducting
the Hungarian Algorithm [73] with original setting, while
our UMSS is evaluated by averaging exhaustive matches
between the generated scanpaths with human scanpaths.
Quantitative results on scanpath prediction for the full 10-

second ground truth can be found in supplementary mate-
rial. Qualitative results are illustrated in Figure 6.

5.4 Saliency Prediction

We compare our saliency prediction results against the state-
of-the-art DVS [14] model on visualisations, and two on nat-
ural scenes (MD-SEM [22] and DCSM [3]). The MASSVIS-
MDEFD that we created for training MD-EAM is also eval-
uated as a baseline.

Metrics. We use four popular metrics for evaluating
performance: Normalized Scanpath Saliency (NSS), Pear-
son’s Correlation Coefficient (CC), Kullback-Leibler diver-
gence (KL), and Similarity or histogram intersection (SIM).
NSS is calculated on fixation maps, while CC, KL and SIM
are calculated on saliency maps.

Results. Table 2 demonstrates the performance of saliency
prediction methods using ground-truth duration of 3 s and
5 s. Our method ranks first in all metrics in 3 s duration, and
is tied with DVS [14] under 5 s duration.

5.5 Ablation Studies

We further carried out two ablation studies to evaluate the
effectiveness of our model. First, we replaced our MD-EAM
with several saliency methods to see the influence of the
saliency model on scanpaths. Then, we remove components
in our scanpath sampling strategy to analyse how each
component contributes to the final model.

5.5.1 Saliency Model

We compared the performance of our MD-EAM with two
saliency models, that is, DVS [14] and MD-SEM [22], by
plugging in the post-processing algorithm of Saltinet to each
of the saliency models. Table 3 shows the effectiveness of
our MD-EAM, which outperforms all the other methods in
all scanpath metrics.

5.5.2 Scanpath Sampling Strategy

We evaluated the scanpath sampling strategy by removing
its components. We replaced the fixation assigning strategy
by evenly sampling fixations for each slice of multi-duration
attention maps [1], and removed our Slice Allocation strat-
egy. Table 3 shows that all metrics improved by adding Slice
Allocation to the full model.
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           Human                    Ours                    Saltinet                PathGAN                 DCSM

S1

S2

S3

sTDE 0.918 0.909 0.831 0.923 0.883
MM-Direction 0.814 0.738 0.647 0.719 0.753
Expert Rating 1.3 (1st) 2.0 (2nd) 3.3 (3rd) 4.0 (4th) 4.4 (5th)

MM-Direction 0.804 0.750 0.768 0.656 0.814
MM-Position 0.794 0.810 0.720 0.749 0.799
Expert Rating 2.0 (2nd) 1.1 (1st) 3.2 (3rd) 4.4 (5th) 4.3 (4th)

sTDE 0.915 0.903 0.831 0.913 0.889
DTW (2D) 5766.45 7512.26 10938.40 7386.64 5554.80
Expert Rating 1.2 (1st) 2.3 (2nd) 3.5 (4th) 4.8 (5th) 3.4 (3rd)

S4

sTDE 0.943 0.908 0.817 0.879 0.897
MM-Shape 0.972 0.948 0.879 0.984 0.941
Expert Rating 1.7 (1st) 1.7 (1st) 3.4 (3rd) 4.0 (4th) 4.2 (5th)

S5

MM-Shape 0.960 0.940 0.895 0.973 0.947
MM-Position 0.856 0.802 0.687 0.765 0.700
Expert Rating 1.8 (2nd) 1.7 (1st) 4.4 (5th) 4.0 (3rd) 4.1 (4th)

Fig. 6: Examples of mismatches between scanpath prediction performance as seen through the evaluation metrics and
visualisation expert ratings. Each row (one visualisation from MASSVIS) shows one metric that is contradictory to expert
rating (orange), and one metric that is consistent with expert rating (blue). Our method and the human baseline have
consistent metrics with expert rating. PathGAN and DCSM rank the highest in some metrics, even though the produced
scanpaths were ranked much lower in our expert user evaluation. See Figure 6 in supplementary material for full table.

5.6 User Study

To gain further insights, we designed a study in which
participants had to qualitatively compare human, ground-
truth scanpaths from the MASSVIS dataset to predictions
from Saltinet, DCSM, PathGAN, and UMSS (ours). Addi-
tionally, we included a second, randomly selected ground-
truth scanpath as a Human baseline. For each trial in the
evaluation, we randomly selected one human scanpath from
the same visualisation as the Target. We randomly sampled
scanpaths for the three baselines where multiple scanpaths

are existed (Saltinet, UMSS, and Human), while PathGAN
and DSCM produced only a single scanpath. Study partici-
pants were asked to compare the five baselines to the human
Target by ranking the generated scanpaths from 1 to 5, where
1 = most similar and 5 = most dissimilar (see Figure 10 in
supplementary material). The presentation order of the five
baselines was counterbalanced using a latin-square study
design. The study contained 40 trials, i.e. 40 visualisations
from the MASSVIS evaluation set. The duration of the
entire study was around 30 minutes and participants were
compensated € 10 for participation.
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TABLE 2: Evaluation of saliency methods under 3-second and 5-second durations. Best results are shown in bold, second
best are underlined. The MASSVIS-MDEFD that we created for training MD-EAM is also evaluated as a baseline (see
Figure 5 in supplementary material). Stars indicate statistical significance of the difference between our Full Model and the
best baseline model (**: p < .01; ***: p < .001).

Duration Methods NSS ↑ CC ↑ KL ↓ SIM ↑

3 s

DCSM [3] 0.678 0.293 1.228 0.409
MD-SEM [22] 1.086 0.474 0.840 0.485
DVS [14] 1.106 0.456 0.933 0.449
MASSVIS-MDEFD 1.208 0.502 1.250 0.476
MD-EAM (Ours) 1.406∗∗∗ 0.586∗∗∗ 0.754∗∗∗ 0.516∗∗∗

5 s

DCSM [3] 0.721 0.371 0.900 0.492
MD-SEM [22] 0.908 0.479 0.709 0.527
DVS [14] 1.031 0.510 0.681 0.531
MASSVIS-MDEFD 0.932 0.448 1.119 0.491
MD-EAM (Ours) 1.024 0.514 0.689 0.530

TABLE 3: Ablation study on saliency encoder and sampling strategy. All methods are evaluated with 5-second ground
truth in terms of Sequence Score (SS), ScanMatch (SM), Dynamic Time Warping (DTW), and scaled Time Dimension
Embedding (sTDE). Best results are shown in bold, best baselines are underlined. Stars indicate statistical significance of
the difference between our Full Model and the best baseline model (**: p < .01; ***: p < .001).

Methods SS ↑ SM ↑ DTW (2D) ↓ sTDE ↑

Saltinet [1] 0.388 0.331 12758.51 0.875
DVS [14] + Saltinet 0.398 0.381 7762.77 0.881
MD-SEM [22] + Saltinet 0.396 0.325 7932.85 0.897
MD-EAM + Saltinet 0.436 0.330 7286.56 0.903

w/o Slice Allocation 0.437 0.332 7213.87 0.903
w/o Duration Prediction 0.445 0.367 6570.35 0.905
Full Model 0.446∗∗∗ 0.387∗∗∗ 6529.11∗∗∗ 0.906

We recruited ten researchers from our university who
were familiar with gaze data and had experience in eye-
tracking studies. Results showed that the Human baseline
had the highest mean ranking of 1.53 (σ = 0.81). The second
mean ranking was achieved by UMSS (ours) with 1.98
(σ = 0.96). Saltinet, DCSM, and PathGAN had a mean rank-
ing of 3.58 (σ = 0.97), 3.73 (σ = 1.01), and 4.18 (σ = 1.01). The
highest mean expert rating of the three scanpath prediction
baselines is only 3.66 (σ = 0.99), which is significantly lower
than UMSS (t (638) = 21.89, p < 0.001). Five examples from
our study are illustrated in Figure 6. Upon completing all
trials, we asked participants to provide qualitative feedback
on the most important characteristics they used in their
subjective evaluation. From the subjective feedback that jus-
tified similarity of scanpaths, participants often mentioned
“Text labels in the Visualization”, “the movement of the path
and the area it covered”. Some frequently mentioned charac-
teristics that made scanpaths dissimilar were “Too crowded
scan paths, too widespread scanpaths” and “Frequent and
fast changes in direction”.

6 DISCUSSION

Experiment Results. To the best of our knowledge, our
method is the first to predict human scanpaths on infor-
mation visualisations. We first compared UMSS to three
state-of-the-art methods (PathGAN [2], DCSM [3], and
Saltinet [1]) using five popular evaluation metrics: the Se-
quence Score [18], DTW [66], sTDE [67, 68], ScanMatch [69],
and MultiMatch [24] (see Table 1). In terms of the Sequence
Score, which converts fixations to characters that represent

semantic regions, our method outperformed the others with
a relative improvement of 11.5 % by mean and 10.33 % by
best. Our method also achieved the best performance for
ScanMatch and for two dimensions of MultiMatch (direction
and position). As for the remaining evaluation metrics, our
method generally ranked second place, and there was no
single method that outperformed all others for all metrics.
For predicting fixation durations, our method ranks second.
To our surprise, DCSM [3] exceeds the human baseline
(0.755 vs 0.730), which indicates that the variance of fixation
duration across human viewers is rather large. However,
it is important to note that current scanpath evaluation
metrics have been developed for natural scenes. Therefore,
it is possible that some metrics do not work as well for
quantifying scanpath quality on information visualisations.
This naturally leads to the question of Which method is
better on information visualisations?, and more fundamentally,
Which evaluation metrics are suited for scanpath prediction on
information visualisations?

Scanpath Metrics. As discussed above, current scanpath
metrics are devised for natural scenes and have not been
tested on information visualisations. Moreover, the quan-
titative rankings (Table 1) and human ratings (Figure 6)
disagree with which method can produce human-like scan-
paths better. Therefore, it is necessary to take a deep look
into how well current scanpath metrics work on informa-
tion visualisations. Our user study gave a clear answer
to which method predicts scanpaths that are perceived as
most natural or human-like, and which metrics are closer to
human ratings on information visualisations. Our method
is the second most comparable (µ= 1.98, σ = 0.96), directly
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following the human baseline (µ= 1.54, σ = 0.80), and is
significantly closer to human scanpaths than any existing
scanpath prediction baselines. The scanpaths predicted by
UMSS are visually more similar to human scanpaths, which
is in agreement with expert ratings from our user study.
Saltinet [1] is the next preferred method, but closer visual
inspection of the scanpaths reveals that many fixations are
scattered throughout the image, including also in white
spaces (see Figure 6). The scanpaths produced by DCSM [3]
that achieved the highest score in terms of DTW, as well as
PathGAN [2] that achieved the highest score for sDTE and
two dimensions of MultiMatch, are very different from a
qualitative point of view: Fixations predicted by DCSM are
clustered in several smaller regions, while those predicted
by PathGAN are clustered in the centre of the visualisa-
tion (see Figure 6). This shows that DCSM and PathGAN fail
to predict scanpaths that are rated as human-like, although
they rank first in some scanpath metrics.

After comparing the quantitative results and our user
study (see Figure 6 and Figure 6 in supplementary ma-
terial), we noticed that the sTDE, DTW, and MultiMatch
metrics are often in contradiction with the expert ratings
from our user study. These metrics can achieve the highest
scores even if expert ratings are low. This phenomenon
explains why our method achieved promising results in
ScanMatch and Sequence Score, but didn’t outperform the
other methods in sTDE, DTW, and MultiMatch (see Ta-
ble 1). Taking these quantitative and qualitative findings
together, only a few of existing metrics (Sequence Score
and ScanMatch) agree with expert ratings when evaluating
predicted scanpaths on information visualisations. Metrics
that evaluate pixel-wise distances between scanpaths, such
as MultiMatch, DTW and sTDE, do not fully capture the
quality of human scanpaths. This is, in part, due to the
nature of the visual stimuli. For natural images, information
is often less structured and fixations can be found anywhere.
In contrast to natural images, the semantic regions in infor-
mation visualisations are separated by the white spaces, and
fixations are much more likely to be inside these semantic
regions, rather than white spaces. In contrast, metrics that
take the semantic regions of fixations into account, such as
the Sequence Score, are more consistent with expert ratings.
The auspicious results of our user study suggest that –
despite the fact that some existing metrics seem to show
that our method does not outperform others – UMSS is a
significant step towards predicting scanpaths on informa-
tion visualisations that are more natural and human-like.

Scanpaths and Saliency. Table 2 shows that MD-EAM
achieves the highest saliency metrics for the 3-second
ground truth, and shares the first place with DVS [14] for
the 5-second ground truth. Multi-duration saliency meth-
ods have an advantage in flexibility, that is, MD-EAM is
competitive for every duration. Furthermore, Table 3 shows
that MD-EAM outperforms the remaining Saltinet-based
methods in Sequence Score, DTW, and sTDE. This indicates
that for those methods that sampled from saliency maps,
the better the saliency maps, the better scanpaths can be
predicted. In summary, this work predicts human-like scan-
paths on information visualisations and shows powerful
performance in multi-duration saliency prediction.

Gaze Behaviour on Information Visualisations. In Section

3, we analysed gaze behaviour on the MASSVIS dataset
and concluded that viewers tend to focus on a visualisation
differently depending on how long they have been observ-
ing it. We found that the Sequence Scores across viewers
was only 0.4 – 0.6 (see Figure 4). This suggests that viewers’
gaze behaviour on information visualisations is subject to a
considerable amount of variability. Another finding specific
to information visualisations is that different visualisation
elements are salient under different viewing durations. This
explains why our method reaches state-of-the-art perfor-
mance. MD-EAM learns the dynamics of gaze behaviour on
information visualisations, and minimises the information
loss when generating scanpaths from the saliency maps.

6.1 Limitations

Due to the data scarcity problem of gaze data under free-
viewing condition on information visualisations, we only
analysed and trained our scanpath prediction model for
memorability tasks. Since viewers were asked to memorise
as much information as possible, attention towards textual
regions such as titles might be preferable than free-viewing
conditions. Given that top-down attention plays an impor-
tant role in visualisations, it is crucial to understand top-
down attention behaviours.

We also assumed that all elements in information visual-
isations are known as prior knowledge. This is a reasonable
assumption on visualisations, since they are artificial and
contain well-structured data. However, incorrect annota-
tions or detection of its constituting elements will decrease
the performance of our scanpath sampling strategy. Element
information from MASSVIS is manually annotated, but, in
practice, a good object detection model to automatically re-
trieve annotations is necessary to visually parse and decode
information visualisation that do no have these annotations.

7 CONCLUSION

In this work, we proposed Unified Model of Saliency and
Scanpaths (UMSS), the first method designed to predict
realistic scanpaths on information visualisations. We sys-
tematically analysed the element-level attention dynamics
on information visualisations, and revealed consistencies
across visualisations and viewers. Our novel multi-duration
element attention maps and data-driven sampling strategy
allowed our model to generate scanpaths of significantly
better quality than previous methods. Our method reached
the state of the art on both saliency and scanpath prediction
tasks on MASSVIS. In conclusion, our work provided a
new perspective towards scanpath prediction on informa-
tion visualisations and points towards novel computational
methods to better predict human scanpaths without the
need for eye tracking equipment.
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