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This document contains the implementation details of
finetuning MD-SEM and training PathGAN (Section 1),
distribution of scanpath length and fixation duration from
the MASSVIS dataset (Figure 1), The accumulated fixation
distribution from the MASSVIS dataset (Figure 2), transition
matrices of two viewers in the MASSVIS (Figure 3), example
annotations from the MASSVIS (Figure 4), full scanpath
metrics of Figure 6 in the main manuscript (Figure 6), exam-
ple element fixation density (EFD) maps and predictions of
MD-EAM in MASSVIS (Figure 5), three example scanpath
predictions of our UMSS model (Figure 7-9), an example
questionnaire interface from our user study (Figure 10),
quantitative results on scanpath prediction for the full 10-
second ground truth (Table 1), and MASSVIS [1] dataset
split (Table 2).

1 IMPLEMENTATION DETAILS
1.1 Fine-tuning MD-SEM

We followed original setting for fine-tuning MD-SEM [2].
The loss weights combination was CCM =3, KL=10, CC=-
5 and NSS=-1. Normalized Scanpath Saliency (NSS) [3]
calculates the performance of a saliency map model is
defined to be the average saliency value of fixated pixels
in the normalized saliency maps. CCM is the Pearson’s
Correlation Coefficient (CC) [4] on pairs of saliency maps
at adjacent durations, which is computed as the differ-
ence between the ground truth and predicted scores [2].
Kullback-Leibler divergence (KL) computes the Kullback-
Leibler divergence between the empirical saliency maps and
the model saliency maps after converting both of them into
probability distributions[5]. Hyperparameters were batch
size=8, and initial learning rate=1E — 4. Adam opti-
miser [6] was used for gradient descent.

1.2 Training PathGAN

The Root Mean Squared Propagation (RMSprop) optimizer
and Binary Cross Entropy loss with learning rate=1F — 4,
and rho=0.9, epsilon=1F — 08, decay=1EF — 07 are used
for both training and fine-tuning. During fine-tuning, we
randomly mixed 5 % of training data from SALICON [7] in
each epoch to prevent forgetting [8]. We trained PathGAN
for 125 epochs on SALICON and 40 epochs on MASSVIS.
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Fig. 1: Distributions of scanpath length (top) and fixation
duration (bottom) from the MASSVIS [1, 9] dataset.
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Fig. 2: Accumulated fixation distribution from the MASSVIS
dataset. (a) The first fixations of all viewers. (b) The rest
fixations except the first fixations of all viewers. There is a
strong centre bias within the first fixations across all viewers.
This is due to the experiment setting, where a fixation cross
shows up right before the image appears on the screen [1].
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TABLE 1: Quantitative evaluation on MASSVIS for the full
10-second ground truth in terms of Dynamic Time Warp-
ing (DTW) and scaled Time Dimension Embedding (sTDE)
metrics. Best results are shown in bold, second best are

underlined.

Methods DTW (2D) | SsTDE?t

Human 8978.57 0.932

PathGAN [10] 10394.58 0.866

PathGAN-official [10] 18396.09 0.764

DCSM [11] 9822.26 0.876

Saltinet [12] 13916.36 0.878

DVS+8Saltinet [12, 13] 13556.94 0.884

MDSEM-+Saltinet [2, 12] 13763.52 0.889

UMSS (Ours) 10040.11 0.903

TABLE 2: MASSVIS [1] Dataset split by visualisation source

and type.
Train Evaluation
Government 83 (25.4%) 17 (25.8%)
Source Infographics 77 (23.5%) 15 (22.7%)
News 101 (30.9%) 21 (31.8%)
Scientific 66 (202%) 13 (19.7%)
Bar 67 (205%) 17 (25.8%)
Pie 11 (3.4%) 5 (7.6%)
Tope Line 57 (174%) 6 (9.1%)
yp Scatter 13 (4.0%) 2 (3.0%)
Table 28 (8.6%) 4 (6.1%)
Combination 18 (5.5%) 4 (6.1%)
Other 133 (40.7%) 28 (42.4%)
Sum 327 (100%) 66 (100%)
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Fig. 3: Transition matrices of two viewers in MASSVIS.
Viewers tend to look at Title and Legend continuously
before jumping to other regions, while they tend to read
Data in cooperation with Annotation, Axis, and Legend. A:
Annotation, X: Axis, G: Graphics, L: Legend, O: Object, T:

Title, S: Source etc., D: Data.
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Fig. 4: Example visualisations from the MASSVIS dataset as well as visualisation element annotations highlighted in colour.
Each visualisation element (e.g. Title or Label) have a unique colour and the colouring policy is consistent with Figure 2
from the main manuscript.
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(a) Example stimuli

(b) Saliency map of 0.5s (c) EFD map of 3s (d) EFD map of 5s

(e) Prediction of 0.5s (f) Prediction of 3s (g) Prediction of 5s

Fig. 5: One example stimulus in MASSVIS (a), and the corresponding saliency map of 0.5s(b), element fixation den-
sity (EFD) maps of 3s (c), and 5s(d) time duration, and predictions of MD-EAM of 0.55s (e), 3s(f), and 55 (g) time duration.
MD-EAM is able to preserve element-level information. The attention shift from Title to Data is clearly shown between (f)
and (g).
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STDE 0.918

DTW (2D) 5227.88 7088.17 13412.89 5261.85 6550.46
MM-Shape 0.951 0.933 0.888 0.949
MM-Direction 0.814 0.738 0.647 0.719 0.753
MM-Length 0.941 0.919 0.849 0.940
MM-Position 0.805 0.705 0.653 0.800 0.750
Expert Rating 1.3 (1st) 2.0 (2nd) 3.3 (3rd) 4.0 (4th) 4.4 (5th)
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DTW (2D) 4662.87 7287.95 9152.58 7010.13 10
MM-Shape 0.937 0.942 0.890 0.947
MM-Direction 0.804 0.750 0.768 0.656
MM-Length 0.933 0.944 0.872 0.941 0.936 N _
MM-Position 0.794 0.810 0.720 0.749 0.799 L
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STDE ‘ 0.831 ‘ 0.913 0.889 -2
DTW (2D) 5766.45 7512.26 10938.40 7386.64
MM-Shape 0.939 0.928 0.889 0.916
MM-Direction 0.779 0.737 0.712 0.701 0.687 -0
MM-Length 0.932 0.924 0.857 0.922
MM-Position 0.780 0.748 0.758 0.748 0.774
Expert Rating 1.2 (1st) 2.3 (2nd) 3.5 (4th) 4.8 (5th) 3.4 (3rd)
~~
STDE 0.943 0.908 0.817 0.879 0.897
DTW (2D) 3166.89 4581.12 4216.57 8184.79 4483.85
MM-Shape 0.972 0.948 0.879 0.941
MM-Direction 0.742 0.720 0.684 0.693 0.691
MM-Length 0.973 0.931 0.795 0.933
MM-Position 0.896 0.790 0.640 0.660 0.817
Expert Rating 1.7 (1st) 1.7 (1st) 3.4 (3rd) 4.0 (4th) 4.2 (5th)
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STDE 0.937 ‘ 0.928 ‘ 0.844 0.915 0.846
DTW (2D) 4859.21 5595.11 8945.90 5828.74 9074.21
MM-Shape 0.960 0.940 0.895 0.947
MM-Direction 0.837 0.732 0.746 0.687 0.747
MM-Length 0.957 0.926 0.865 0.955 0.936
MM-Position 0.856 0.802 0.687 0.765 0.700
Expert Rating 1.8 (2nd) 1.7 (1st) 4.4 (5th) 4.0 (3rd) 4.1 (4th)

Fig. 6: Full table of examples of mismatches between scanpath prediction performance as seen through the evaluation
metrics and visualisation expert ratings. Each row (one visualisation from MASSVIS) shows several metrics that are
contradictory to expert rating (orange), or consistent with expert rating (blue).
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Fig. 7: Scanpath predictions using UMSS (ours) on a sample visualisation from the MASSVIS dataset.
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Fig. 8: Scanpath predictions using UMSS (ours) on a sample visualisation from the MASSVIS dataset.



IEEE TRANSACTIONS ON VIZUALISATION AND COMPUTER GRAPHICS

Table 2 Deaths in women aged 15-44 years attribytable to six leading risk factors,
2004 (percentage) > B -
LoWeincome High-
countries income income
Q countries countries

Unsafgls
Unme

Iron df 21 0
5m 9 mm
3n 4m
am 5m

(Overweight and obesity 11 18 21 4m

Source: World Health Organization.”

Table 2 Deaths in women aged 15-44 years attributable to six leading risk factors,
entore)

Middle- High-
income income
countries counfides

World Low-income

Table 2 Deaths in women aged 15-44 years attributable to six leading risk factors,
2004 (percentage) 4 .

High-
income
countries

Unsafe sex 5
Unmet contraceptivefée 0
Iron deficiency 0
9 .
4m
3 5m
Overweight and obesity 21 im

Source: World Health Organization.”

Table 2 Deaths in women aged 15-44 years attributable to six leading risk factors,
2004 {percentage)
Low-ipcoitte  Middle- @ High-
counges e “income
countries

Table 2 Deaths in women aged 15-44 years attributable to six leading risk factors,
2004 (percentage)
< ) Middle- High-
income income,
countries countrigs

H@fMpressure/5

cholesterol and glucose
Tobacco use 2 11 3n 5m
Overweight and obesity 11 N 2 4m

Source: World Health Uiganization.?

Source: World Health Organization.”

Table 2 Deaths in women aged 15-44 years attributable to six leading risk factors,
)

Middle-
income
countries

Low-income
countries

&

High bilud pressure,

cholesterol
Tobacco use

Overweight and obCsi
Source: World Health Organization.”

d gluco:

Table 2 Deaths in women aged 15-44 years atiributable to six leading risk factors,
2004 (percentage)
LS i @joh-
b e Thcome
couptkies
-

o use
Overweight and obesity

Table 2 Deaths in women aged 15-44 years attributable to six leading risk factors,
2004 (percentage)

income,

countries cq@iptries

Unsafe sex
Unmet contraceptive need
Iron deficiency

Alcohol use

High blood pressure,
cholesterol and glucose

‘Tobacco use
Overweight and obesity 11 1.0 21 . |

Source: World Health Organization.”

Source: World Health Organization.*

Table 2 Deaths in women aged 15-44 years attributable to six leading risk factors,

Middle-
income
, countries

Unsafe sex

Unmet contraceptive need 5.

Iron deficiency 4m

Alcohol use 3n

High blood pressure, 21 21 3n 4m
cholesterol and glucose

Tobacco use 21 11 3n 5|
Overweight and obesity 11 11 21 4m

Source: World Health Organization.”

Fig. 9: Scanpath predictions using UMSS (ours) on a sample visualisation from the MASSVIS dataset.
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Which of the five images containing scanpaths (1, 2, 3, 4 or 5) is more similar to the Target
image? Please rank them by similarity.

(1) Human Scanpath

Image (1) Image (2) Image (3) Image (4) Image (5)
First choice
Second choice
Third choice
Fourth choice

Fifth choice

Fig. 10: An example questionnaire interface of one trial (out of 40) from our user study with visualisation experts. Scanpaths
were shown to the study participants as GIFs. Fixations and saccades were drawn sequentially on the image. At the end of
one loop, the visualisation paused for a short period of time until a new loop started to allow subjects to compare all the
scanpaths. Study participants had to rank the five options in order of their similarity when compared to one ground-truth,
human scanpath. The presentation order of the baselines (1, 2, 3, 4, and 5) was counterbalanced according to a latin-square
study design.
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