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Abstract. Morphable face models are a powerful tool, but have pre-
viously failed to model the eye accurately due to complexities in its
material and motion. We present a new multi-part model of the eye
that includes a morphable model of the facial eye region, as well as an
anatomy-based eyeball model. It is the first morphable model that accu-
rately captures eye region shape, since it was built from high-quality head
scans. It is also the first to allow independent eyeball movement, since
we treat it as a separate part. To showcase our model we present a new
method for illumination- and head-pose–invariant gaze estimation from
a single RGB image. We fit our model to an image through analysis-by-
synthesis, solving for eye region shape, texture, eyeball pose, and illumi-
nation simultaneously. The fitted eyeball pose parameters are then used
to estimate gaze direction. Through evaluation on two standard datasets
we show that our method generalizes to both webcam and high-quality
camera images, and outperforms a state-of-the-art CNN method achiev-
ing a gaze estimation accuracy of 9.44◦ in a challenging user-independent
scenario.
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1 Introduction

The eyes and their movements convey our attention, indicate our interests, and
play a key role in communicating social and emotional information [1]. Esti-
mating eye gaze is therefore an important problem for computer vision, with
applications ranging from facial analysis [2] to gaze-based interfaces [3,4]. How-
ever, estimating gaze remotely under unconstrained lighting conditions and sig-
nificant head-pose is a yet-outstanding challenge. Appearance-based methods
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Fig. 1. Our generic gaze estimator is enabled by two contributions. First, a novel
3DMM of the eye built from high quality head scans. Second, a new method for gaze
estimation – we fit our 3DMM to an image using analysis-by-synthesis, and estimate
gaze from fitted parameters.

that directly estimate gaze from an eye image have recently improved upon
person- and device-independent gaze estimation by learning invariances from
large amounts of labelled training data. In particular, Zhang et al. trained a
multi-modal convolutional neural network with 200,000 images collected during
everyday laptop use [5], and Wood et al. rendered over one million synthetic
training images with artificial illumination variation [6]. It has been shown that
the performance of such methods heavily depends on the head pose and gaze
range that the training data covers – results are best when the training data
closely matches the desired test condition [7]. This means a gaze estimator
trained in one scenario does not perform well in another. Instead, we would
prefer a generic gaze estimator that performs well in all conditions.

3D morphable models (3DMM) are a powerful tool as they combine a model
of face variation with a model of image formation, allowing pose and illumination
invariance. Since their introduction [8], they have become an established method
for many tasks including inverse rendering [9,10], face recognition [11,12], and
expression re-targeting [13]. Given a face image, such systems use model fitting to
discover the most likely shape, texture, expression, pose, and illumination para-
meters that generated it. However, previous work has failed to accurately model
the eyes, portraying them as a static geometry [8,11], or removing them from the
face entirely [13,14]. This is a result of two complexities that are not handled by
current methods: (1) The eyeball’s materials make it difficult to reconstruct in
3D, leading to poor correspondence and loss of detail in the 3DMM, (2) Previous
work uses blendshapes to model facial expression – a technique not compatible
with independent eyeball movement.We make two specific contributions:

An Eye Region 3DMM. Our first contribution is a novel multi-part 3DMM
that includes the eyeball, allowing us to accurately model variation in eye
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Fig. 2. A comparison between the Basel Face Model (BFM, left) [11], and our own
(right). Note the BFM’s lack of caruncle and unrealistic eyeball proxy geometry. Our
model has well-defined correspondences for these difficult regions.

appearance and eyeball pose (see Fig. 1 left). Recent work presented a mor-
phable shape model of the eye region, but did not capture texture variation [6].
We constructed a 3DMM of the facial eye region by carefully registering a set of
high-quality 3D head scans, and extracting modes of shape and texture variation
using PCA. We combined this with an anatomy-based eyeball model that can
be posed separately to simulate changes in eye gaze.

Analysis-by-Synthesis for Gaze Estimation. Our second contribution is a
novel method for gaze estimation: fitting our 3DMM to an input image using
analysis-by-synthesis (see Fig. 1 right). We solve for shape, texture, pose, and
illumination simultaneously, so our fitted model parameters provide us with a
robust estimate of where someone is looking in a 3D scene. Previous approaches
for remote RGB gaze estimation can be categorized as either appearance-based,
feature-based, or model-based [3]. Our method is first to combine the benefits
of all three: (1) We minimize the appearance difference between synthesized and
observed images using a dense image-error term. (2) We use sparse facial features
localized with a face tracker [15] for initialization and regularization. (3) We use
our morphable model to capture variation between people and eye motion itself.
We iteratively fit our model using gradient descent with numerical derivatives
efficiently calculated with a tailored GPU rasterizer.

2 Related Work

2.1 3D Morphable Models

A 3D morphable model is a statistically-derived generative model, parameterized
by shape and texture coefficients. They are closely related to their 2D analogue,
active appearance models [16]. 3DMMs have been successfully applied to vari-
ous face-related computer vision problems ranging from reconstruction [8,10] to
recognition [11,12], and have also been extended to other body parts, such as
the hand [17] as well as the entire body itself [18,19].

Blanz and Vetter built the first 3DMM from a set of 200 laser scans of
faces with neutral expression [8]. They first computed a dense correspondences
between the scans, then used PCA to extract modes of variation. Subsequent
work with 3DMMs has followed the same approach, building similar models with
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higher quality scans [11], or more training samples [12,20]. However, despite
advances in scanning technology, the eye remains problematic for 3D recon-
struction, leading to poor correspondences and loss of quality in the 3DMM (see
Fig. 2).

3DMMs represent a face with neutral expression, so they are often combined
with a model of facial motion. Vlasic et al. used a multi-linear model to separately
encode identity and expression, and demonstrated its use in facial transfer [21].
More recent works have instead used blend shapes – an animation technique that
stores a different version of a mesh for each expression, and interpolates between
them [14]. However, while blend shapes work well for skin, they cannot represent
the independent motion of the eyeball. For these reasons, previous work either
replaced the scanned eyeball with a proxy mesh [11] or completely removed
the eye from the 3DMM mesh [13,22]. Bérard et al. recently presented a 3D
morphable eyeball model [23] built from a database of eyeball scans [24], showing
impressive results for high-quality semi-automatic eyeball reconstruction. Our
work uses a simpler model that is sufficient for low-quality input data, and our
fitting procedure is fully automatic.

2.2 Remote Gaze Estimation

Gaze estimation is a well established topic in computer vision (see [3,25] for
reviews). Methods can be categorized as (1) appearance-based – map directly
from image pixels to a gaze direction [5,26,27], (2) feature-based – localize facial
feature points (e.g. pupil centre, eye corner) and map these to gaze [28,29], or (3)
model-based – estimate gaze using a geometric model of the eye [30–32]. Some
systems combine these techniques, e.g. using facial features for image alignment
[26,33], mapping appearance to a 2D generative model [34], or combining head
pose with image pixels in a multi-modal neural network [5]. To the best of
our knowledge, no work so far has combined appearance, facial features, and a
generative model into a single method, solving for shape, texture, eyeball pose,
and illumination simultaneously.

The current outstanding challenge for remote RGB gaze estimation is achiev-
ing person- and device- independence under unconstrained conditions [5]. The
state-of-the-art methods for this are appearance-based, attempting to learn
invariances from large amounts of training data. However, such systems are
still limited by their training data with respect to appearance, gaze, and head
pose variation [5,27]. To address this, recent work used graphics to synthesize
large amounts of training images. These learning-by-synthesis methods cover a
larger range of head pose, gaze, appearance, and illumination variation with-
out additional costs for data collection or ground truth annotation. Specifically,
Wood et al. rendered 10 K images and used them to pre-train a multi-modal
CNN, significantly improving upon state-of-the-art gaze estimation accuracy [7].
They later rendered 1M images with improved appearance variation for train-
ing a k-Nearest-Neighbour classifier, again improving over state-of-the-art CNN
results [6].
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While previous work used 3D models to synthesise training data [6], ours
is first to use analysis-by-synthesis – a technique where synthesis is used for
gaze estimation itself. This approach is not constrained by a limited variation
in training images but instead can, in theory, generalise to arbitrary settings.
Additionally, while previous work strove for realism [7], our forward synthesis
method focuses on speed in order to make analysis-by-synthesis tractable.

3 Overview

At the heart of our generic gaze estimator are two core contributions. In Sect. 4
we present our first contribution: a novel multi-part eye region 3DMM. We con-
structed this from 22 high-resolution face scans acquired from an online store1,
combined with an anatomy-based eyeball model. Our model is described by a
set of parameters Φ that cover both geometric (shape, texture, and pose) and
photometric (illumination and camera projection) variation.

Fig. 3. An overview our fitting process: We localize landmarks L in an image, and use
them to initialze our 3DMM. We then use analysis-by-synthesis to render an Isyn that
best matches Iobs. We finally extract gaze g from fitted paramters Φ∗.

In Sect. 5 we present our second contribution: analysis-by-synthesis for gaze
estimation (see Fig. 3). The core idea is to fit our 3DMM to an image using
analysis-by-synthesis – given an observed image Iobs, we wish to produce a syn-
thesized image Isyn that matches it. We then estimate gaze from the fitted
eyeball pose parameters. Key in this process is our objective function E(Φ),
which considers both a local dense measure of appearance similarity, as well as
a holistic sparse measure of facial feature-point similarity (see Eq. 10).

4 3D Eye Region Model

Our goal is to use a 3D eye region model to synthesize an image which matches
an input RGB eye image. To render synthetic views, we used a multi-part model
consisting of the facial eye region and the eyeball. These were posed in a scene,

1 Ten24 3D Scan Store – http://3dscanstore.com/.

http://3dscanstore.com/
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Fig. 4. We re-parameterize high-resolution 3D head scan data (left) into a more efficient
lower resolution form (right). We use a carefully designed generic eye region topology
[6] for consistent correspondences and realistic animation.

illuminated, and then rendered using a model of camera projection. Our total
set of model and scene parameters Φ are:

Φ = {β, τ, θ, ι, κ} , (1)

where β are the shape parameters, τ the texture parameters, θ the pose parame-
ters, ι the illumination parameters, and κ the camera parameters. In this section
we describe each part of our model, and the parameters that affect it.

Morphable facial eye region model – β, τ The first part of our model is
a 3DMM of the eye region, and serves as a prior for facial appearance. While
previous work used a generative shape model of the eye region [6], ours captures
both shape and texture variation, allowing.

We started by acquiring 22 high-quality head scans as source data. The
first stage of constructing a morphable model is bringing scan data into cor-
respondence, so a point in one face mesh is semantically equivalent to a point
in another. While previous work computed a dense point-to-point correspon-
dence from original scan data [8,11], we compute sparse correspondences that
describe 3D shape more efficiently. We manually re-parameterised each original
high-resolution scamn into a low resolution topology containing the eye region
only (see Fig. 4). This topology does not include the eyeball, as we wish to pose
that separately to simulate its independent movement. Additionally, we main-
tain correspondences for detailed parts, e.g. the interior eyelid margins, which are
poorly defined for previous models [11]. We uv-unwrap the mesh and represent
color as a texture map, coupling our low-resolution mesh with a high-resolution
texture.

Following this registration, the facial eye regions are represented as a com-
bination of 3D shape s (n vertices) and 2D texture t (m texels), encoded as 3n
and 3m dimensional vectors respectively,

s = [x1, y1, z1, x2, ...yn, zn]T ∈ R
3n (2)

t = [r1, g1, b1, r2, ...gm, bm]T ∈ R
3m (3)

where xi, yi, zi is the 3D position of the ith vertex, and rj , bj , gj is the color of the
jth texel. We then performed Principal Component Analysis (PCA) on our set
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Mean shape Modes of shape variation
μs μs± 2σU1 μs± 2σU2 μs± 2σU3 μs± 2σU4

Mean texture Modes of texture variation
μt μt± 3σV1 μt± 3σV2 μt± 3σV3 μt± 3σV4

Fig. 5. The mean shape μs and texture μt along with the first four modes of variation.
The first shape mode U1 varies between hooded and protruding eyes, and the first
texture mode V1 varies between dark and light skin.

of c ordered scans to extract orthogonal shape and texture basis functions: U ∈
R

3n×c and V ∈ R
3m×c. For each of the 2m shape and texture basis functions,

we fit a Gaussian distribution to the original data. Using this we can construct
linear models that describe variation in both shape Ms and texture Mt,

Ms = (μs,σs,U) Mt = (μt,σt,V ) (4)

where μs ∈ R
3n and μt ∈ R

3m are the average 3D shape and 2D texture, and
σs = [σs1...σsc] and σt = [σt1...σtc] describe the Gaussian distributions of each
shape and texture basis function. Figure 5 shows the mean shape and texture,
along with the four most important modes of variation. Facial eye region shapes
s and textures t can then be generated from shape (βface ⊂ β) and texture
coefficients (τface ⊂ τ) as follows:

s(βface) = μs + U diag(σs)βface (5)
t(τface) = μt + V diag(σt) τface (6)

From our set of c = 22 scans, 90% of shape and texture variation can be encoded
in 8 shape and 7 texture coefficients. This reduction in dimensionality is impor-
tant for fitting our model efficiently. Additionally, as eyelashes can provide a
visual cue to gaze direction, we model them model them using a semi-transparent
mesh controlled by a simple hair simulation [6].
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Eyeball Mean texture Examples of iris variation
3D mesh μiris μiris+ 2σW1 μiris− 2σW1 μiris+ 2σW2

Fig. 6. Our eyeball mesh, mean iris texture μiris, and some examples of iris texture
variation captured by our linear model Miris.

Parametric eyeball model – β, τ The second part of our multi-part model is
the eyeball. Accurately recovering eyeball shape is difficult due to its complex
structure [24], so instead we created a mesh using standard anatomical mea-
surements [6] (see Fig. 6). Eyeballs vary in shape and texture between different
people. We model changes in iris size geometrically, by scaling vertices on the iris
boundary about the 3D iris centre as specified by iris diameter βiris. We used
a collection of aligned high-resolution iris photos to build a generative model
Miris of iris texture using PCA,

Miris = (μiris,σiris,W ) (7)

This can be used to generate new iris textures tiris. As the “white” of the eye is
not purely white, we model variations in sclera color by multiplying the eyeball
texture with a tint color τtint ∈ R

3. In reality, the eyeball has a complex lay-
ered structure with a transparent cornea covering the iris. We avoid explicitly
modelling this by computing refraction effects in texture-space [6,35].

Posing our multi-part model – θ Global and local pose information is
encoded by θ. Our model’s parts are defined in a local coordinate system with
origin at the eyeball centre, so we use model-to-world transforms Mface and Meye

to position them in a scene. The facial eye region part has degrees of freedom
in translation and rotation. These are encoded as 4×4 homogenous transforma-
tion matrices T and R, so model-to-world transform Mface = TR. The eyball’s
position is anchored to the face model, but it can rotate separately through local
pitch and yaw transforms Rx(θp) and Ry(θy), giving Meye = TRxRy.

When the eye looks up or down, the eyelid follows it. Eyelid motion is mod-
elled using procedural animation [6] – each eyelid vertex is rotated about the
inter-eye-corner axis, with rotational amounts chosen to match measurements
from an anatomical study [36]. As our multi-part model contains disjoint parts,
we also “shrinkrwap” the eyelid skin to the eyeball, projecting eyelid vertices
onto the eyeball mesh to avoid gaps and clipping issues.

Scene illumination – ι As we focus on a small region of the face, we assume
a simple illumination model where lighting is distant and surface materials are
purely Lambertian. Our illumination model consists of an ambient light with
color lamb ∈ R

3, and a directional light with color ldir ∈ R
3 and 3D direction vec-

tor L. We do not consider specular effects, global illumination, or self-shadowing,
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Fig. 7. We measure dense image-similarity as the mean absolute error between Iobs
and Isyn, over a mask of rendered foreground pixels P (white). We ignore error for
background pixels (black).

so illumination depends only on surface normal and albedo. Radiant illumination
L at a point on the surface with normal N and albedo c is calculated as:

L(n, c) = c lamb + c ldir (N · L) (8)

While this model is simple, we found it to be sufficient. If we considered a larger
facial region, or fit models to both eyes at once, we would explore more advanced
material or illumination models, as seen in previous work [13].

Camera projection – κ For a complete model of image formation, we also con-
sider camera projection. We fix our axis-aligned camera at world origin, allowing
us to set our world-to-view transform as the identity I4. We assume knowledge
of intrinsic camera calibration parameters κ, and use these to build a full pro-
jection transform P . A local point in our model can then be transformed into
image space using the model-view-projection transform PM{face|eye}.

5 Analysis-by-synthesis for Gaze Estimation

Given an observed image Iobs, we wish to produce a synthesized image Isyn (Φ∗)
that best matches it. 3D gaze direction g can then be extracted from eyeball
pose parameters. We search for optimal model parameters Φ∗ using analysis-by-
synthesis. To do this, we iteratively render a synthetic image Isyn (Φ), compare
it to Iobs using our energy function, and update Φ accordingly. We cast this as
an unconstrained energy minimization problem for unknown Φ.

Φ∗ = argmin
Φ

E(Φ) (9)

5.1 Objective Function

Our energy is formulated as a combination of a dense image similarity metric
Eimage that minimizes difference in image appearance, and a sparse landmark
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similarity metric Eldmks that regularizes our model against reliable facial feature
points, and weight λ controlling their relative importance.

E(Φ) = Eimage(Φ) + λ · Eldmks(Φ, L) (10)

Image similarity metric. Our primary goal is to minimise the difference
between Isyn and Iobs. This can be seen as an ideal energy function: if Isyn = Iobs,
our model must have perfectly fit the data, so virtual and real eyeballs should be
aligned. We approach this by including a dense photo-consistency term Eimage

in our energy function. However, as the 3DMM in Isyn does not cover the entire
of Iobs, we split our image into two regions: a set of rendered foreground pixels
P that we compute error over, and a set of background pixels that we ignore
(see Fig. 7). Image similarity is then computed as the mean absolute difference
between Isyn and Iobs for foreground pixels p ∈ P .

Eimage(Φ) =
1

|P |
∑
p∈P

|Isyn(Φ, p) − Iobs(p)| (11)

Fig. 8. Iobs with landmarks L (white dots), and model fits with our landmark similarity
term (top), and without (bottom). Note how it prevents erroneous drift in global pose,
eye region shape, and local eyelid pose.

Landmark similarity metric. The face contains important landmark feature
points that can be localized reliably [13]. These can be used to efficiently consider
the appearance of the whole face, as well as the local appearance of the eye region.
We use a state-of-the-art face tracker [15] to localize 14 landmarks L around the
eye region in image-space (see Fig. 8). For each landmark l ∈ L we compute a
corresponding synthesized landmark l′ using our 3DMM. The sparse landmark-
similarity term is calculated as the distance between both sets of landmarks,
normalized by the foreground area to avoid bias from image or eye region size.
This acts as a regularizer to prevent our pose θ from drifting too far from a
reliable estimate.

Eldmks(Φ, L) =
1

|L|
|L|∑
i=0

‖li − l′i‖ (12)
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5.2 Optimization Procedure

We fit our model to the subject’s left eye. This is a challenging non-convex,
high-dimensional optimization problem. To approach it we use gradient descent
(GD) with an annealing step size. Calculating analytic derivatives for a scene
as complex as our eye region is challenging due to occlusions. We therefore use
numeric central derivatives ∇E to guide our optimization procedure:

Φi+1 = Φi − t · ri ∇E(Φi) where (13)

∇E(Φi) =
(

∂E

φ1
. . .

∂E

φ|Φ|

)
and

∂E

φj
=

E(Φi + hj) − E(Φi − hj)
2hj

(14)

where t = [t1...t|Φ|] are per-parameter step-sizes, h = [h1...h|Φ|] are per-
parameter numerical values, and r the annealing rate. t and h were calibrated
through experimentation. We explored alternate optimization techniques includ-
ing LBFGS [37], and rprop [38] and momentum variants of GD, but we found
these to be less stable, perhaps due to our use of numerical rather than analyt-
ical derivatives. Computing our gradients is expensive, requiring rendering and
differencing two images per parameter. Their efficient computation is possible
with our tailored GPU DirectX rasterizer that can render Isyn at over 5000fps.

Initialization. As we perform local optimization, we require an initial model
configuration to start from. We use 3D eye corner landmarks and head rotation
from the face tracker [15] to initialize T and R. We then use 2D iris landmarks

aibmuloCpaideyE

HD

HD

VGA

VGA

Fig. 9. Example model fits on gaze datasets Eyediap [39] (HD and VGA) and Columbia
[40], showing estimated gaze (yellow) and labelled gaze (blue).
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and a single sphere eyeball model to initialize gaze [2]. β and τ are initialized to
0, and illumination lamb and ldir are set to [0.8, 0.8, 0.8].
Runtime. Figure 7 shows convergence for a typical input image, with Iobs size
800 × 533px, and Isyn size 125 × 87px. We converge after 60 iterations for 39
parameters, taking 3.69 s on a typical PC (3.3Ghz CPU, GTX 660 GPU).

5.3 Extracting Gaze Direction

Our task is estimating 3D gaze direction g in camera-space. Once our fit-
ting procedure has converged, g can be extracted by applying the eyeball
model transform to a vector pointing along the optical axis in model-space:
g = Meye [0, 0,−1]T .

6 Experiments

We evaluated our approach on two publicly available eye gaze datasets:
Columbia [40] and Eyediap [39]. We chose these datasets as they show the full
face, as required for our facial-landmark based initialization.

Columbia contains of images of 56 people looking at a target grid on the
wall. The participants were constrained by a head-clamp device, and images
were taken from five different head orientations (from −30◦ to 30◦). Example
fits can be seen in Fig. 9 right. In our experiments we used a subset of 34 people
(excluding those with eyeglasses) with 20 images per person, resulting in 680
images. As the images were taken by a high quality camera (5184 × 3456px), we
downsampled them to 800 × 533px for faster processing.

Eyediap contains videos of 16 participants looking at two types of targets:
screen targets on a monitor; and floating physical targets. Recordings were made
with two cameras: a VGA camera (640 × 480px) below the screen, and a HD
camera (1920×1080px) placed to the side. Example fits can be seen in Fig. 9 left.
Participants displayed both static and free head motion. We extracted images
from the VGA videos for our experiment – 622 images with screen targets and
500 images with floating targets. In both cases we used a gradient descent step
size of 0.0025 with an annealing rate of 0.95 that started after 10th iteration.

6.1 Gaze Estimation

In the first experiment we evaluated how well our method predicts gaze direc-
tion for Columbia. The results are shown in Fig. 10, giving average gaze error of
M = 8.87◦,Mdn = 7.54◦ after convergence. As we do not impose a prior on pre-
dicted gaze distribution, our system can produce outliers with extreme error, so
we believe its performance is best represented by a median (Mdn) average. Note
how the decrease in fitting error corresponds to a monotonic decrease in mean
and median gaze errors. Furthermore, our approach outperformes the geomet-
ric approach used to initialize it [2], a recently proposed k-Nearest-Neighbour
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Fig. 10. Fitting error (left) and gaze estimation error (right). Note how gaze error
improves from the initial estimate. Filled regions show inter-quartile range.

Fig. 11. Fitting (blue) and gaze estimation (red) error on Eyediap (VGA). We outper-
form a state-of-the-art CNN [5]. Additionally, the CNN was not able to generalize to
the floating target condition, while ours can. (Color figure online)

approach [6] (M = 19.9◦,Mdn = 19.5◦) and a näıve model that always predicts
forwards gaze (M = 12.00◦,Mdn = 11.17◦).

The results for Eyediap VGA images can be seen in Fig. 11. As before
the decrease in pixel error corresponds in the decrease in gaze errors. Fur-
thermore, our final gaze estimation error on the Eyediap screen condition
(M = 9.44◦,Mdn = 8.63◦) outperfoms that reported in literature previously
(p < .0001, independent t-test) – 10.5◦ using a Convolutional Neural Net-
work [5]. See Table 1 for other comparisons. We also outperform the initial-
ization model, a kNN model (M = 21.49◦,Mdn = 20.93◦), and a näıve model
(M = 12.62◦,Mdn = 12.79◦). The results for floating targets are less accurate

Table 1. We outperform state-of-the-art cross-dataset methods trained on UT [27]
and synthetic data [6]: CNN [5], Random Forests (RF) [27], kNN [5], Adaptive Linear
Regression (ALR) [33], and Support Vector Regression (SVR) [26].

ours CNN RF kNN ALR SVR synth

Gaze error (M◦) 9.44 10.5 12.0 12.2 12.7 15.1 19.9
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but still improve upon our initialisation baseline. Zhang et al. [5] did not evalu-
ate on floating targets due to head pose variations not present in their training
set. Despite a drop in accuracy, our method can still generalize to this difficult
scenario and outperforms a kNN model (M = 30.85◦,Mdn = 28.92◦), and a
näıve model (M = 31.4◦,Mdn = 31.37◦).

We performed a similar experiment for Eyediap HD images that exhibit head
pose, achieving a gaze error of M = 11.0◦,Mdn = 10.4◦ for screen targets and
M = 22.2◦,Mdn = 19.0◦ for floating targets. Despite extreme head pose and gaze
range, we still perform comparably with the state-of-the-art and outperform a
kNN model (M = 29.39◦,Mdn = 28.62◦ for screen, and M = 34.6◦,Mdn = 33.19◦

for floating target), and a näıve model (M = 22.67◦,Mdn = 22.06◦ for screen,
and M = 35.08◦,Mdn = 34.35◦ for floating target).

6.2 Morphable Model Evaluation

In addition to evaluating our system’s gaze estimation capabilities, we performed
experiments to measure the expressive power of our morphable model and the
effect of including Eldmks in our objective function.

First, we assessed the importance of our facial point similarity weight (λ)
to gaze estimation accuracy on the Columbia dataset. We used the same fitting
strategy, but varied λ. Results can be seen in Fig. 12 (right). It is clear that λ
has a positive impact on gaze estimation accuracy, by not allowing fits to drift
too far from the reliable estimates and by reducing the variance of the error.

Second, we wanted to see if modelling more degrees of shape and appearance
variation led to better image fitting and gaze estimation. We therefore varied the
number of shape (β) and texture (τ) principal components (PCs) that our model
was allowed to use during fitting on Columbia. We varied both the texture and
shape PCs together, using the same number for both. As seen in Fig. 12 (left),
more PCs lead to better image fitting error, as Isyn matches Iobs better when
allowed more variation. A similar downward trend can be seen for gaze error,

Fig. 12. As we include more shape and texture and shape principal components (PCs)
in the facial morphable model, both fitting and gaze error decrease. Also note the effect
of our landmark regularization term λ which decreases the error (and its standard
deviation) by not allowing the fit to drift.
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suggesting better modelling of nearby facial shape and texture is important for
correctly aligning the eyeball model, and thus determining gaze direction.

7 Conclusion

We presented the first multi-part 3D morphable model of the eye region. It
includes a separate eyeball model, allowing us to capture gaze – a facial expres-
sion not captured by previous systems [13,14]. We then presented a novel
approach for gaze estimation: fitting our model to an image with analysis-by-
synthesis, and extracting the gaze direction from fitted parameters. Our method
is the first to jointly optimize a dense image metric, a sparse feature metric, and
a generative 3D model together for gaze estimation. It generalizes to different
quality images and wide gaze ranges, and out-performs a state-of-the-art CNN
method [5].

Limitations still remain. While other gaze estimation systems can operate in
real time [2,5], ours takes several seconds per image. However, previous analysis-
by-synthesis systems have been made real time through careful engineering [41];
we believe this is possible for our method too. Our method can also become
trapped in local minima (see Fig. 8). To avoid this and improve robustness, we
plan to fit both eyes simultaneously in future work.
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