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1 Introduction
This document contains additional materials supplementing the experimental results in the
main paper. We first investigate alternative region averaging strategies. We then provide
additional evaluations to assess when our method is beneficial over traditional approaches.
We finally discuss the impact of allowing the RSN to not only choose a sub-region from the
input image but also to change the size of the crop.

1.1 Effect of region averaging
Although we show that increasing number of regions tends to improve performance, it is
computationally expensive to add more regions to the network. The possible combinations
of regions grows exponentially with more selection steps, and each region will increase the
total length of the concatenated feature vector for gaze net. These two factors also make the
initial training of the gaze net with random regions more difficult.

Inspired by [1] which uses averaged image features from multiple point of views to es-
timate human pose, we evaluate the effect of using averaged features from multiple regions.
We used our single-region model and take the top-k regions with the highest probabilities as
input to the gaze net. We trained one model with each different k for evaluation.

The results are shown in Figure 2, together with the performance of our two-region and
three-region models as references. We can see that, even with the averaged features, the
use of more regions results in lower gaze estimation error. The model achieves better perfor-
mance than the two-region model when the model uses the averaged feature from six regions.
However, the performance is still worse than the three-region model until adding a seventh
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Figure 1: Examples of the top seven regions with highest probabilities from our single region
model. The green rectangle indicates the selected region. Our model selects region around
two eyes (a,b), focuses on one eye due to visibility (c,d) or brightness (e,f). Extreme motion
blur can cause failure on selecting eyes (g,h).

Figure 2: Experiments on averaging features from multiple regions. The x-axis indicates
numbers of regions and y-axis is gaze estimation errors in degree. We also show the gaze
estimation error from two-region model and three-region model.

region. This is because these regions from the single-region model are independent with
each other therefore can have overlap with each other which contain redundant information.

Figure 1 shows some examples of the top seven regions proposed by the one-region RSN.
The figure shows that regions are located around two eye (Figure 1 (a,b)), and focus on one
eye due to visibility (Figure 1 (c,d)) or brightness (Figure 1 (e,f)). Again, region selection is
difficult and more spread out for blurry faces (Figure 1 (g,h)).

2 Impact of different head poses and illumination
conditions

In this section, we unpack the effect of our method in the presence of difficult environmen-
tal conditions. In particular, we provide more evidence that the method selects meaningful
sub-regions across different head poses and illumination conditions. In Figure 3 we select
sample images based on their head-poses, varying across the entire range of horizontal ro-
tation and compare our method to the baseline (without dynamic region selection). The top
row shows examples from the baseline method, always using the left eye region as input, and
the second row shows examples from our method which dynamically picks the sub-region
based on the content of the input image. The green rectangles indicate the selected region.
We furthermore show the gaze estimation error in an inset in each image. While both meth-
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Error: 4.15 Error: 3.43 Error: 5.65 Error: 8.79 Error: 11.24 Error: 14.17 

Error: 4.30 Error: 3.21 Error: 5.45 Error: 4.36 Error: 7.34 Error: 5.47 

Figure 3: Examples of selected regions and gaze estimation error (in inset). Top row: results
from the static region baseline. Second row: results from our method across different head
poses. Our method can dynamically select the visible eye to achieve better gaze estimation
performance.

Error: 8.87 Error: 11.87 Error: 6.43 Error: 2.76 Error: 4.53 Error: 5.45 

Error: 5.46 Error: 4.93 Error: 4.74 Error: 3.82 Error: 3.34 Error: 6.21 

Figure 4: Examples of selected regions and gaze estimation error (in inset). Top row: results
from the static region baseline. Second row: results from our method across different illu-
mination conditions. Our method can dynamically select the brighter eye to achieve better
gaze estimation performance compared to the baseline.

ods attain comparable results under good visibility of the left eye (Figure 3, left half), our
method clearly produces better results once the left eye is at least partially occluded (right
part of Figure 3).

A similar pattern occurs when unpacking the effect of varying lighting conditions. Fig-
ure 4 shows how our method selects region compared to the baseline. Analogously here
the baseline always chooses the left eye as input. Depending on which side of the face is
brighter this can have a significant impact on the gaze estimation performance. In contrast,
our method can pick the brighter eye region to yield better performance compared to the
baseline method (left part of Figure 3). In general, it can be seen that the gaze error remains
more stable across different head-poses and lighting conditions. This is also reflected in
quantitative results. Our method achieves both a lower mean gaze estimation error and a
lower standard deviation compared to the baseline. (Evaluated on the GazeCapture testset.
Ours: 4.05◦ mean error, SD = 3.15◦ versus baseline: 4.35◦ mean error and SD = 3.34◦).
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Figure 5: Examples of the selected three regions with different sizes. The green rectangle
indicates the selected region. Our model selects regions contain both eyes for most of sam-
ples (a-c), focuses on a single eye due to brightness (d,e) or visibility (f,g). Extreme motion
blur is a typical failure case (h).

3 Region size
In most of our experiments we use a single, fixed size for the selected sub-regions (0.3× the
input image). This size was choosen to limit the search space during training. However, this
is an additional dimension that potentially impacts the gaze net performance.

To further understand the impact of crop size, we performed an experiment with the
three-region + face model as reported in the main paper, but allowed different sizes for each
of the three regions (0.2, 0.3 and 0.5 times the input size respectively). The experiment
was conducted as within GazeCapture dataset evaluation. The model with fixed region size
achieves 3.22 degrees gaze estimation error, and the model that is allowed to vary the crop
size achieves even better results (3.14 degrees). This suggests that there is additional poten-
tial in selecting the pixels that are informative for the final task. It would be of interest to
explore even more sophisticated strategies, potentially including soft-attention mechanisms,
in future work.

Figure 5 illustrates that the network leverages the differently sized crops as in a fo-
cus+context fashion. For most of samples, two regions are located on one eye but are chosen
at different scales (Figure 5(a-c)). However, depending on the lighting condition (Figure 5
(d,e)) and visibility (Figure 5 (f,g)), the same dynamic region selection behavior as in the
single region case can be observed. Extreme blur remains a challenging setting (Figure 5
(h)).
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