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ABSTRACT
Recent work has highlighted the potential of modelling interactive
behaviour analogously to natural language. We propose interac-
tive behaviour summarisation as a novel computational task and
demonstrate its usefulness for automatically uncovering latent user
goals while interacting with graphical user interfaces. We introduce
SummAct – a novel hierarchical method to summarise low-level
input actions into high-level goals to tackle this task. SummAct
first identifies sub-goals from user actions using a large language
model and in-context learning. In a second step, high-level goals are
obtained by fine-tuning the model using a novel UI element weight-
ing mechanism to preserve detailed context information embedded
within UI elements during summarisation. Through a series of eval-
uations, we demonstrate that SummAct significantly outperforms
baseline methods across desktop and mobile user interfaces and
interactive tasks by up to 21.9%. We further introduce two exciting
example use cases enabled by our method: interactive behaviour
forecasting and automatic behaviour synonym identification.

CCS CONCEPTS
• Computing methodologies→Machine learning; Artificial
intelligence; • Human-centered computing → Human com-
puter interaction (HCI).
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1 INTRODUCTION
Recent work has demonstrated that users’ interactive behaviour,
e.g., when interacting with graphical user interfaces using the
mouse or keyboard, shares similarities with the sequential and
hierarchical nature of natural language [56]. In parallel, an increas-
ing number of works have started to describe interactive behaviour
using natural language and process it using large language mod-
els [13, 24, 32, 34, 53]. One key advantage of this language perspec-
tive is facilitating a more interpretable analysis and understanding
of interactive behaviour, thus enabling novel paradigms for solving
human-computer interaction (HCI) tasks.

Among these tasks, understanding users’ goals is key to intelli-
gent interactive systems and anticipatory user interfaces [23, 56].
Recognising goals based on the user’s behaviour history has been
widely studied and applied in HCI, including for unintentional
error detection [1], next action prediction [4], or task automa-
tion [25, 53, 61]. Despite its potential for HCI and promising first
results, predicting users’ goals from their interactive behaviour re-
mains challenging, partly due to human behaviour’s high variability
and complexity. Previous works typically assumed a pre-defined
and fixed set of goals and treated goal recognition as a classifica-
tion task. However, this approach neither captures the wide variety
of user goals in everyday scenarios nor can it robustly adapt to
unseen or context-dependent goals [55]. It can also result in misin-
terpretations when users’ needs do not align with predefined goal
categories, which often happens in real-world applications [57].

In this work, we take inspiration from text and image summari-
sation tasks studied in natural language processing and computer
vision. These tasks involve summarising long text or complex videos
into a concise sentence description. Similarly, we formulate goal
recognition as an interactive behaviour summarisation task: Human
interactive behaviour is to be summarised into a sentence, i.e., a
natural language description of users’ underlying interactive goals.
In contrast to existing methods, interactive behaviour summarisa-
tion enables recognising an open-ended set of goals. Furthermore,
it allows for capturing more flexible and varied interaction goals
and handling goals not seen during training.

To address this task, we propose SummAct – a novel large lan-
guage model (LLM)-based method that uses a hierarchical interac-
tive behaviour summarisation process: the method first summarises
low-level actions into mid-level sub-goals, then uses them to aug-
ment the input, and finally summarise behaviour into a high-level
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goal. This work focuses on interactive behaviour at the user inter-
face (UI) element level. Each input action sample consists of the
interacted UI element and the user’s operation on this element (e.g.,
click or select). The UI element information includes its category
(e.g., button or combo box), inherent (e.g., the name or the visible
text on a button), and additional content (further values that users
are interested in and pick, e.g., a value selected from a combo box).
On these input actions, SummAct first generates sub-goals using
in-context learning via a pre-trained, frozen LLM due to the lack of
ground-truth annotations. It then fine-tunes the LLM to produce
the final summary. During fine-tuning, we further propose a UI
element weighting mechanism that assigns higher weights to the UI
element contents, thereby preserving the detailed context informa-
tion embedded within these elements. This is crucial for accurately
interpreting goals that exhibit subtle differences and for certain use
cases like behaviour forecasting.

We evaluate SummAct on two datasets that cover a desktop
(Mind2Web [13]) and a mobile (MoTIF [6]) interaction setting. We
show that SummAct can accurately uncover the goals underly-
ing user actions, with a sentence embedding cosine similarity of
up to 0.842 compared to the ground-truth goals. We also demon-
strate the importance of our design choices with the full SummAct
model significantly outperforming ablated versions by up to 21.9%
in cosine similarity. We finally introduce two exciting use cases
enabled by interactive behaviour summarisation: 1) providing con-
textual information of user goals to enhance behaviour forecasting
for anticipatory user interfaces and 2) automatically identifying
behaviour synonyms to understand user preferences, interaction
strategies, system usability and common design patterns.
In summary, the specific contributions of our work are three-fold:

• We formulate goal recognition as the novel open-ended task
of summarising interactive behaviour into natural language
descriptions. This formulation overcomes existing limitations
associated with pre-defined goal sets and improves general-
isability to unseen goals. Towards this task, we propose an
LLM-based method, SummAct1 incorporating two distinct and
novel designs – hierarchical summarisation and UI element
weighting mechanism.

• We show the effectiveness of these designs, and SummAct in
general, for interactive behaviour summarisation, through a
series of evaluations on two datasets covering desktop and
mobile interaction settings.

• We demonstrate the potential of interactive behaviour sum-
marisation for two example use cases: interactive behaviour
forecasting and identifying behaviour synonyms. These are
widely relevant in HCI, particularly for developing intelligent
interactive systems or UI optimisation.

2 RELATEDWORK
We discuss related work on (1) understanding user goals behind
interactive behaviour, (2) large language models for interactive
behaviour modelling, and (3) summarising non-language data.

1https://collaborative-ai.org/publications/zhang25_chi/

2.1 Understanding User Goals Behind
Interactive Behaviour

Recognising users’ goals (specific tasks users intend to perform)
from their interactive behaviour is key to intelligent user interfaces,
which can proactively support users by automatically adjusting the
UIs or providing action recommendations [19, 57]. Therefore, an
increasing number of works in HCI field have studied automatic
goal prediction from interactive behaviour. For example, in virtual
reality (VR) interactive environments, David-John et al. [12] recog-
nised user goals of selecting an item from their gaze behaviour,
which is necessary for building adaptive interfaces to reduce users’
physical and cognitive workload. Hu et al. [23] built a model based
on convolutional neural networks and bidirectional gated recurrent
units on user eye and head movements to recognise four goals
(Free viewing, Visual search, Saliency, and Track), providing in-
sights into different human visual attention under different VR
goals. Researchers have also developed various goal recognition
methods based on user actions in more pervasive, daily scenarios
such as interacting with personal computers or mobile devices.
These actions were captured through different modalities, includ-
ing mouse movements and clicks, keyboard typing, eye tracking
and touch interactions. For instance, Elbahi et al. [15] recognised
which e-learning task the users performed from mouse movement
to help learners quickly interact with the new platform. Koldijk et
al. [28] developed different machine learning models to recognise
office tasks from users’ mouse and keyboard actions. The recogni-
tion results provided workers with overviews of performing tasks
that could benefit their self-management. Zhang et al. [57] pro-
posed a multimodal random forest-based approach to recognise
text formatting goals from users’ mouse, keyboard and gaze actions,
showing the potential of creating proactive text editors. In the mo-
bile interaction settings, Xu et al. [54] identified intentional versus
unintentional touches from gaze, head and screen touch behaviour,
enabling a more natural interaction.

However, all the above works studied a pre-defined, fixed, and
closed set of user goals, which inherently limits the adaptability and
scalability of systems to new goals. Inspired by the prior finding
that interactive behaviour shares a similar sequential and hierarchi-
cal structure with natural language [56], in this paper, we formulate
goal recognition as summarising interactive behaviour into a sen-
tence. This attempt accommodates an open-ended set of user goals
and thus allows for more flexible and comprehensive interactive
behaviour modelling.

2.2 Large Language Models for Interactive
Behaviour

LLMs have recently achieved ground-breaking success in HCI re-
search, bringing novel insights and methodology to model user ac-
tions for different applications. For example, Liu et al. [38] proposed
HintDroid, an LLM-based method using in-context learning to gen-
erate hint-text in Android applications based on the user’s input
and corresponding UI context. Wang et al. [49] used a pre-trained
LLM to investigate conversational interactions with mobile user
interfaces via prompt engineering and zero-shot learning. Their re-
sults demonstrated the potential of using LLMs for language-based
mobile interactions. Huang et al. [24] applied pre-trained LLMs
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and a chain-of-thought technique to extract macros from mobile
interaction traces in existing datasets. Other research focuses on
building LLM-based automatic agents that navigate through in-
teractive systems and complete pre-defined tasks [10, 34, 53, 62].
For instance, Deng et al. proposed MindAct [13] to perform given
tasks in complex web environments automatically. MindAct first
fine-tuned a language model to rank all the UI elements available
on the web page based on the task description and action history.
Selecting the top-ranked candidates, MindAct then formulated task
automation as a multi-choice question-answering task and used
in-context learning for task automation.

Despite the acknowledged potential of LLMs in interactive be-
haviour modelling, their application in goal recognition remains
largely under-explored. In this paper, we approach goal recognition
through an interactive behaviour summarisation task and propose
an LLM-based method, SummAct, to address this task.

2.3 Summarising Non-language Data
In language processing, summarisation has been widely studied and
applied in condensing large amounts of information into concise
sentences, enabling efficient content consumption across various
domains, such as documents [14, 37], code [21], and speech [47].
Inspired by the success of these works, researchers have started to
summarise non-language data into coherent textual descriptions
for quick and accessible understanding of complex data [49]. For in-
stance, image captioning enhances the comprehension of the images
and meanwhile enables text-based image retrieval [48]. Kawamura
et al. [27] proposed a multimodal method to summarise lecture
videos using audio transcripts, on-screen images and texts, enabling
users to obtain information from lengthy video content effectively.
Lin et al. [36] and Chen et al. [8] summarised human motion videos,
which not only enhanced the understanding of the motion sequence
but also had the potential to allow controllable text-to-motion gen-
eration. Chen et al. [9] annotated natural-language explanations
for fixations in scan paths, providing insights into implicit gaze be-
haviour change and benefiting explainable scan path prediction. In
HCI, researchers have studied the summarisation of graphical user
interfaces. Wang et al. [50] summarised core information of mo-
bile UI screens into natural language via the proposed multimodal
method, Scree2Words, integrating the text, image, structures and
UI semantics. They showcased that the summarisation could po-
tentially be used for language-based UI retrieval, enhancing screen
readers and screen indexing for conversational mobile interactions.

These applications highlight the transformative potential of ap-
plying summarisation techniques to diverse data modalities. Build-
ing upon this, our work introduces a novel method to summarise
the complex interactive behaviour into human-interpretable natural
language sentences, which reflect users’ latent goals. Additionally,
we present two example use cases enabled by interactive behaviour
summarisation, interactive behaviour forecasting and identifying
behaviour synonyms, that are widely relevant for intelligent inter-
active systems and user interface optimisation.

3 INTERACTIVE BEHAVIOUR
SUMMARISATION USING SUMMACT

Building on recent advances demonstrating the potential of analysing
interactive behaviour similarly to natural language [24, 34, 56], our
method SummAct addresses the novel task of interactive behaviour
summarisation. Input to SummAct is a sequence of UI element-level
action events the user triggered while interacting with a graphical
user interface. Every action consists of the UI element the user
has interacted with and the operation performed on this element
(e.g., click or select). The UI element contains the information of its
category (e.g., button or combo box), the inherent (e.g., its name or
the text on it) and additional content (the specific value the user
is interested in, e.g., the value selected from a combo box). The
output of our method is a natural language sentence that concisely
summarises their interactive behaviour and, as we show here, their
latent interaction goals. Interactive behaviour summarisation al-
lows us to recognise an open-ended set of goals, including those
not seen during training. This is in stark contrast to existing meth-
ods for the classification of goals that are limited to a closed and
predefined set of possible goals [15, 16, 58]. As such, SummAct can
provide a more comprehensive and generalisable understanding of
interactive behaviour.

Figure 1 provides an overview of SummAct’s hierarchical ap-
proach to interactive behaviour summarisation: Given a sequence
of user input actions encoded in natural language descriptions,
SummAct first summarises these low-level actions into a set of
sub-goals. Due to the absence of ground-truth data, we used expert
annotations in combination with in-context learning to adapt a
pre-trained, frozen LLM to generate sub-goals. In the second step,
these sub-goals are combined with the original actions and sum-
marised into high-level goals via fine-tuning the LLM. To preserve
UI element content (indicated in bold in Figure 1) in the summary,
our method uses a novel UI element weighting mechanism dur-
ing fine-tuning. Two previous findings inspired this hierarchical
approach: Hierarchical modelling of language data can robustly
handle extensive and complex input, such as long documents [37];
and interactive behaviour has an inherent hierarchical nature simi-
lar to that observed in natural language [56]. In the following, we
describe each of these steps in more detail.

3.1 Sub-goal Generation
The first step involves generating sub-goals from low-level input ac-
tions. As shown in Figure 1, actions marked in the same colour are
summarised into the same sub-goal, which later becomes a phrase
integrated into the overall goal. Given the lack of HCI datasets
offering annotations of interaction sub-goals, we used in-context
learning. In-context learning involves giving an LLM a small set of
examples presented within the context (the prompt) at inference
time to guide its response [52]. This approach leverages LLM’s abil-
ity to understand and adapt to patterns presented in the immediate
context of the query without the need to fine-tune the model. To
obtain these examples, we asked three HCI, GUI, and behaviour
modelling experts to annotate the sub-goals on five samples from
the training set collaboratively and reach agreements on the anno-
tation results [33]. These samples are five different action sequences
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🔥
Large Language Model

❄
Large Language Model

Hierarchical  Interactive Behaviour
Sum

m
arisation

+

In-context learning

- Select Pickup from combobox with text Reserva-on type on it
- Type text Boston into searchbox with text Find a loca-on on it
- Click the span element with text Boston on it
- Click the bu:on element with text March 18 on it
- Select 5:00 PM from combobox with text Time on it
- Click the span element with text 2 guests on it
- Select 1 guest from combobox with text Size on it
- Click the bu:on element with text Update search on it

Check for pickup restaurant available in Boston, 
on March 18, 5pm  with just one guest.

- Set the reserva>on type to "Pickup"
- Enter "Boston" as the loca>on
- Select the reserva>on date and >me to March 
18, 5pm
- Adjust the number of guests to 1

User Ac<ons

Overall Goal

Sub-goals 

UI element weights

Step 1: Sub-goal genera<on

Step 2: UI element-enhanced fine-tuning

Figure 1: Overview of SummAct for uncovering user goals during user interface interactions through interactive behaviour
summarisation. SummAct employs a hierarchical process that initially generates sub-goals and produces the overall goal in
natural language. The input is a sequence of user actions, including the interacted UI element and the user’s operation on this
element. SummAct uses in-context learning to infer an arbitrary number of sub-goals using a pre-trained, frozen LLM (Step 1)
and then fine-tunes the LLM while introducing a UI element weighting mechanism (Step 2) to keep detailed context embedded
in UI element contents, as highlighted in bold. Actions in the same colour are summarised into the same sub-goal and then to a
phrase in the overall goal. The output summary reflects the latent goals that underlie these actions.

completing five different tasks. In Appendix B.1, we provide the
used prompt, including the example of sub-goal annotation.

3.2 UI Element-enhanced Fine-tuning
In the second step, we fine-tuned the LLM to summarise the overall
goal from the generated mid-level sub-goals and the original low-
level actions. In Appendix B.2, we provide sample prompts for
this fine-tuning step. LLMs are typically structured as sequence-to-
sequence models, i.e. they are trained to generate output sequences
based on input sequences, such as summarising an input. Therefore,
LLMs are commonly trained using a next token prediction task in a
teacher-forcing setup, where the model is guided by a ground-truth
token rather than the previously predicted token to predict the
next token [46]. This training strategy helps stabilise the training

process and accelerates convergence by reducing the propagation of
errors through the sequence [49]. Thus, based on the input prompt,
LLMs iteratively predict the next token and continually update
their predictions as each new token is added to the output sequence.
Next token prediction is formulated as a classification task and thus
uses a cross-entropy loss 𝐿𝑁𝑒𝑥𝑡𝑇𝑜𝑘𝑒𝑛 [30]. For the 𝑗-th token in the
input sequence, this loss is calculated as

𝐿𝑁𝑒𝑥𝑡𝑇𝑜𝑘𝑒𝑛 𝑗
= 𝑙𝑜𝑔(P𝜃 (𝑇𝑜𝑘𝑒𝑛 𝑗 |𝑇𝑜𝑘𝑒𝑛1, ...,𝑇𝑜𝑘𝑒𝑛 𝑗−1)) (1)

where 𝜃 are the model parameters.
In preliminary experiments, we found that fine-tuning the LLM

only using next token prediction led to UI element content getting
excluded from the final interactive behaviour summary. This may
be because the model tends to rely on frequent patterns of general
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natural language rather than focus on task-specific information
embedded in the UI elements [2]. Figure 1 shows examples of such
information related to the interactive behaviour summarisation task
(highlighted in bold). Let us consider the first input action ("Select
Pickup from combo box with text Reservation type on it") as an
example: "Reservation type" is the name of the combo box, i.e., the
inherent content of the combo box, representing what this combo
box is about; while "Pickup" is an additional content of the combo
box, namely one value the combo box provides that the user is
interested in and ultimately selects. Retaining such UI element con-
tents in the final summaries is particularly important for interactive
behaviour summarisation: First, such content provides interactive
context information necessary to distinguish between subtle goals.
For instance, actions include selecting “1” from a combo box named
“guest number” on a booking site by some users versus selecting
more guests by other users. However, these detailed contents are
ignored, and the summarised goals are both finding a hotel room;
the system may further inaccurately suggest unsuitable accommo-
dations, e.g., family rooms for solo travellers and vice versa, causing
decreased usability and potential frustration. Second, they are im-
portant for downstream applications, such as behaviour forecasting,
to ensure the prediction is relevant and consistent with the current
context and underlying goals [53]. For example, if a user clicks on
a button named "gluten-free" but this content is overlooked, the
interactive system may mistakenly predict the upcoming actions to
involve browsing or purchasing products containing gluten, leading
to a worse user experience.

To address this challenge we propose a UI element weighting
mechanism to enhance the fine-tuning process by guiding the model
to focus on these contents. This is similar to ensuring that a text
summary covers essential keywords in natural language process-
ing [14]. Specifically, for the 𝑖-th training sample, we create a weight
vector K𝑖 , where each component 𝐾𝑖 𝑗 denotes the weight assigned
to the 𝑗-th token in the ground-truth summary:

𝐾𝑖 𝑗 =

{
𝜆 if 𝑇𝑜𝑘𝑒𝑛 𝑗 ∈ 𝑇𝑜𝑘𝑒𝑛𝐷𝑒𝑡𝑎𝑖𝑙

1 otherwise
(2)

As such, tokens that contain action details (𝑇𝑜𝑘𝑒𝑛𝐷𝑒𝑡𝑎𝑖𝑙 ) receive 𝜆
times the weight compared to other tokens.We empirically set 𝜆 = 2
in our experiments. The overall fine-tuning loss integrating this
weighted mechanism L𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 is then computed as a weighted
version of the original cross-entropy loss:

L𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 = K ◦ L𝑁𝑒𝑥𝑡𝑇𝑜𝑘𝑒𝑛 (3)

3.3 Implementation
We opted for the lightweight open-source Mistral-7B model [26]
as the LLM backbone, known for its efficiency and effectiveness
in handling various NLP tasks. Mistral-7B incorporates advanced
techniques such as grouped-query attention for fast inference and
sliding window attention for managing long sequences and complex
contexts. These features contribute to Mistral-7B’s superior perfor-
mance on various benchmarks compared to other state-of-the-art
models while using fewer parameters, thus conserving computa-
tional resources [44]. We used a batch size of 16 and a maximum
input sequence length of 1024, with an initial learning rate of 1e-6.
We used the Adam optimiser with 𝛽1 = 0.9 and 𝛽2 = 0.95 [46],

and a cosine annealing scheduler for a progressive reduction of
the learning rate following a cosine curve, a strategy proven to
stabilise the training phase [39]. We fine-tuned the model for 15
epochs using eight Tesla V100-SXM2-32GB GPUs, completing the
training within ten hours.

4 EXPERIMENTS
We conducted experiments to evaluate the quality of interactive
behaviour summaries generated by SummAct. Given the novelty of
this task and the lack of existing baseline methods, we compare the
full model with several ablated versions instead. More specifically,
starting with using an off-the-shelf, pre-trained LLM – the common
practice in HCI research currently [5, 24] – we incrementally add
fine-tuning, sub-goal generation, and the UI element weighting
mechanism. We report quantitative metrics that measure how simi-
lar the generated summaries are compared to the ground truth and
qualitative similarities and differences of the generated summaries.

4.1 Datasets
We conducted all evaluations using two prominent datasets that en-
compass both the desktop (Mind2Web [13]) and mobile (MoTIF [6])
interaction contexts. These datasets are extensively used to under-
stand and model user interfaces and interactive behaviours [5, 62].
We used the text instructions assigned to participants in the two
datasets as ground-truth overall goals. They encode interactive be-
haviour as user actions to achieve specified interaction objectives.
Each user action is annotated with information related to the UI
element (category and content) and the user operation (e.g., click
or swipe) associated with this element.

4.1.1 Mind2Web. This dataset provides crowdsourced actions across
2,350 tasks performed on 137 real-world websites (e.g., Booking,
Uniqlo, IMDB) spanning 31 domains (e.g., travel, shopping, enter-
tainment). As such, this dataset offers a wide variety of user actions
and goals and allows us to evaluate the performance of SummAct
in real-world scenarios. Mind2Web was divided by its authors into
a training set as well as a testing set, which comprised three testing
subsets: 1) cross-domain includes data instances from different do-
mains, e.g., shopping vs travel; 2) cross-website includes instances
from unseen websites, e.g., Booking vs Airbnb; and 3) cross-task
includes unseen tasks, e.g., booking a flight vs buying a shirt. We fol-
lowed this train-test split in our experiments. Mind2Web provided
symbolic representations of actions (see examples in Table 3). To
leverage the capacity of LLMs and create a uniform input format for
SummAct, we additionally converted these raw action strings into
natural language descriptions using a transformation template [41].
Our evaluations verified the effectiveness of this preprocessing
(see Appendix A for more details).

4.1.2 MoTIF. This dataset targets a mobile interaction setting com-
prising screen touch data collected on 756 different tasks across
125 Android applications. The dataset directly provides synthetic
natural language sentences describing each low-level action includ-
ing the interacted UI element and the user’s operation (click, type
or swipe) on it. We followed the same way of splitting MoTIF into
training and testing sets (refer to [6] for more details). The testing
set includes feasible and infeasible tasks, such as tasks that are too
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unclear or cannot be completed in the given App. We only used
the feasible tasks for our evaluations to ensure that user actions
reliably reflect the corresponding goals.

4.2 Ablations
We compared the full SummActmodelLLM+FT+SubGoal+Weight
(fine-tuned LLM using both the input actions and sub-goals with
L𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 for summarisation) with several ablated versions to
evaluate the impact of the different modifications. All methods used
the same LLM and prompt templates to ensure a fair comparison.

• LLM: pre-trained LLM using only the input actions.
• LLM+SubGoal: pre-trained LLM using both the input actions
and the sub-goals.

• LLM+FT: fine-tuned LLM using only the input actions with
L𝑁𝑒𝑥𝑡𝑇𝑜𝑘𝑒𝑛 for summarisation.

• LLM+FT+Weight: fine-tuned LLM using only the input actions
with L𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 for summarisation.

• LLM+FT+SubGoal: fine-tuned LLM using both input actions
and sub-goals with L𝑁𝑒𝑥𝑡𝑇𝑜𝑘𝑒𝑛 for summarisation.

Since the UI element weighting mechanism is specifically incor-
porated into the loss function of fine-tuning, we do not have a
standalone version of the pre-trained LLM enhanced solely by the
weighting mechanism, i.e., LLM+Weight.

4.3 Quantitative Evaluations
We first quantify the similarity between ground truth and sum-
marised goals for all methods with four widely used NLP met-
rics [49, 60]. Specifically, we report Recall-Oriented Understudy
for Gisting Evaluation (ROUGE) [35], Metric for Evaluation of
Translation with Explicit ORdering (METEOR) [3], and Bilingual
Evaluation Understudy (BLEU) [43] that count the overlapping n-
grams between texts to assess their similarity, thus providing a
measure that reflects lexical precision and recall. We further report
an embedding-based metric using a state-of-the-art sentence en-
coder, Sentence Transformer2, to obtain the sentence embeddings.
Embedding-based metrics evaluate the cosine similarity between
sentences and capture deeper and more robust semantic mean-
ings that go beyond mere lexical matches [45]. All of these metrics
indicate better results as their values increase.

Table 1 provides an overview of the results of this comparison.
As can be seen from the table, our proposed full model consistently
outperforms the ablated versions on all test sets and all metrics, ob-
taining a cosine similarity of up to 0.842 with the ground-truth user
goals. Among the three generalisation test sets from Mind2Web,
SummAct performed better in cross-website and worse in the cross-
domain setting. The former is likely because different websites
within the same domain share similar UI designs and thus require
similar navigation patterns [13], which can be efficiently captured
and integrated by our SummAct. These results also show that gener-
alisation across domains remains challenging due to the variations
in context and user interactions.

We can also see from Table 1 that directly using a pre-trained
LLM performs the worst while adding fine-tuning, sub-goals, or

2https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

the UI element weighting mechanism improved performance no-
tably. Although adding sub-goals (LLM+SubGoal) increased cosine
similarity by up to 13.3% (0.203 vs 0.230 on MoTIF), the largest
performance increase was achieved when adding fine-tuning (LLM
vs LLM+FT), where the cosine similarity improved by up to 89.9%
(0.348 vs 0.661, cross-task setting) on Mind2Web, and 240.4% (0.203
vs 0.691) on MoTIF.

Also, adding our two novel designs of sub-goals and UI element
weighting mechanism contributes to the effectiveness of SummAct
(LLM+FT vs LLM+FT+SubGoal+Weight), together leading to an
up to 21.9% improvement on the cosine similarity (0.691 vs 0.842
on MoTIF). Comparing our method with LLM+FT+Weight, the UI
element weighting mechanism increased the cosine similarity on
Mind2Web by 7.1% (0.705 vs 0.755) in the cross-domain setting, 7.6%
(0.740 vs 0.796) in the cross-task setting, 6.1% (0.756 vs 0.802) in
the cross-website setting, and by 7.3% (0.785 vs 0.842) on MoTIF.
On n-gram-based metrics, SummAct obtained improvements of
up to 53.0% (0.296 vs 0.453 on Mind2Web cross-task setting) on
BLEU, 16.7% (0.383 vs 0.447 on Mind2Web cross-website setting)
on ROUGE, and 28.3% (0.293 vs 0.376 on Mind2Web cross-domain
setting) on METEOR. In Section 5.1, we further show that a lack
of the UI contents harms performance for behaviour forecasting.
Similarly, SummAct outperformed its ablated version that removed
the sub-goals (LLM+FT+Weight), where the cosine similarity in-
creased by 5.2% (0.718 vs 0.755) in Mind2Web cross-domain setting,
5.7% (0.753 vs 0.796) in the cross-task setting, 5.1% (0.763 vs 0.802)
in the cross-website setting and 11.4% (0.756 vs 0.842) on MoTIF.
Moreover, BLEU improved by up to 50.5% (0.301 vs. 0.453), achieved
on Mind2Web cross-task setting; the maximum enhancement of
ROUGE 15.97% (0.689 vs. 0.799) on MoTIF; while the largest im-
provement of METEOR reached 29.5% (0.332 vs. 0.430), obtained
in Mind2Web cross-task setting. Taken together, these evaluations
show the effectiveness of the proposed components for interactive
behaviour summarisation.

4.4 Qualitative Analysis
We further examined the summaries generated by SummAct and
its ablations qualitatively to understand the impact of the different
designs.

4.4.1 Impact of UI element weighting Mechanism. Compared to the
summaries generated by the full SummAct implementation, the
ablated version without UI element weighting mechanism lacks
detailed context information embedded in UI element contents. For
example, the ground-truth goal to Find a campground in Orlando
for two adults to check in on Mar 29 and check out on Mar 30
was correctly summarised by SummAct as Find a campground
in Orlando for two adults from March 29 to March 30. On the
contrary, the ablated version (LLM+FT+SubGoal) produced a less
accurate summary, Find hotels in Orlando for two adults in March,
missing the information of the precise dates and the specific type of
accommodation. This issue arose because during the summarisation,
the ablation ignored the detailed content in a clicking action on the
button of “Find a KOA”, which specified the accommodation type
as a campground instead of any hotel.

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Method Metric Mind2Web MoTIFCross Domain Cross Task Cross Website

LLM

CosSim .357 .348 .380 .203
BLEU .004 .004 .004 .012
ROUGE .050 .056 .060 .077
METEOR .126 .132 .146 .093

LLM+SubGoal

CosSim .381 .374 .404 .230
BLEU .006 .004 .006 .009
ROUGE .051 .055 .059 .063
METEOR .150 .157 .167 .098

LLM+FT

CosSim .631 .661 .673 .691
BLEU .201 .217 .204 .293
ROUGE .313 .301 .312 .511
METEOR .303 .306 .322 .510

LLM+FT+Weight

CosSim .705 .740 .756 .785
BLEU .349 .296 .305 .407
ROUGE .345 .372 .383 .730
METEOR .293 .341 .374 .709

LLM+FT+SubGoal

CosSim .718 .753 .763 .756
BLEU .291 .301 .301 .359
ROUGE .381 .392 .391 .689
METEOR .323 .332 .363 .662

LLM+FT+SubGoal+Weight
(SummAct)

CosSim .755 .796 .802 .842
BLEU .406 .453 .445 .453
ROUGE .390 .432 .447 .799
METEOR .376 .430 .454 .758

FT = Fine-tuning; SubGoal = Sub-goal generation; Weight = UI element weighting mechanism

Table 1: Interactive behaviour summarisation results achieved by our proposed SummAct and its ablated versions. The evaluation
is conducted on a desktop dataset Mind2Web (including three test subsets for generalisability assessment across domains, tasks
and websites) and a mobile dataset MoTIF. We measure the summarisation quality with four metrics: cosine similarity between
sentence embeddings, n-gram-based BLEU, ROUGE, and METEOR. The best results are shown in bold.

Another example is the goal Find a highest rated dealer for Cadil-
lac with a rating above 4 stars within 20 miles of zip 60606. Sum-
mAct effectively summarised this into Find a highest rated Cadillac
dealer above 4 star within 20 miles of 60606. However, the ab-
lation’s prediction was Find the highest rated dealer for Cadillacs,
missing the specific criteria of rating and proximity.

This analysis shows that without the UI element weighting mech-
anism, although the summaries retain the overall logic, they lack
crucial specific information the UI elements provide.

4.4.2 Impact of sub-goals. We then examined the summaries gen-
erated by the other ablation (LLM+FT+Weight) in which the sub-
goals were removed from SummAct. We found that the summaries
retained specific information but often failed to capture the over-
arching logic or coherence, especially when handling complex,
multi-step interactive behaviour. Figure 2 shows two examples of
this phenomenon, each with the user’s input actions and their un-
derlying goals, the ground-truth goal, the summary generated by
the full version of SummAct, and the summary generated by the

ablation. For example, at the top, the user browsed through top-
trending content within a community about work, then picked one
post with the heading “...woman-dominated work...” and saved it.
Based on this interactive behaviour, SummAct’s summarisation
was the same as the ground truth, i.e. save a rising post on a com-
munity about work. However, the ablation produced find a post
about women-dominated workplace, focusing disproportionately on
specific content cues, such as the particular post’s heading, rather
than the overall context of these actions. This demonstrates that
without sub-goals, summaries may lack the essence and broader
context of user interactions and instead focus on specific keywords
or aspects, resulting in a summary that does not reflect the overall
goal.

In the second example, the user searched for auto repair with
filtering conditions, selected one particular item, and then read its
reviews. This was summarised correctly by SummAct: the summary
includes that the user first looks for a business and then verifies its
quality according to its reviews. However, the ablation summarised
the goal as find an accredited auto repair shop in zip code 10002 that
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1. Type text "work" into search box with text "Search all of Reddit" on it
2. Click the search box element with text "Search all of Reddit" on it
3. Click the button element with text "Communities" on it
4. Click the heading element with text "r/work" on it
5. Click the button element with text "Top" on it
6. Click the menu item element with text "Rising" on it
7. Click the heading element with text "It’s interesting working in a 

woman-dominated work..." on it
8. Click the button element with text "Save" on it

User actions Goals
Save a rising post on a community about work

Save a rising post on a community about work

Find a post about women dominated workplace

Ground-truth

SummAct

w/o Sub-goals

1. Type text "auto repair" into searchbox with text "Find" on it
2. Click the button element with text "Auto Repair" on it
3. Type text "10002" into textbox with text "Near" on it
4. Click the button element with text "10002" on it
5. Click the button element with text "Search" on it
6. Click the switch element with text "Show BBB Accredited only" on it
7. Click the svg element with text "VT" on it
8. Click the button element with text "Sort By" on it
9. Click the link element with text "Fast Lane 24 Hour Auto Repair" on it
10. Click the link element with text "Read Reviews" on it

User actions Goals

Show me the reviews for an auto repair business 
closest to 10002

Find an accredited auto repair shop in zip code 
10002 that has good reviews.

Ground-truth

SummAct

w/o Sub-goals

Read reviews for an auto repair business near 
10002

Figure 2: Two examples showing the input user actions, their underlying ground-truth goals and those summarised by the full
version of SummAct and its ablation removing sub-goals.

has good reviews, mistakenly understanding the goal of filtering the
auto repair business based on their reviews. This occurs because,
without sub-goals, the model processes all behaviour information
indiscriminately and struggles to dissect the intricate dependencies
and hierarchy among input actions. As a result, the ablated model
erroneously swapped the sequence priorities between finding auto
repair and reading reviews.

This analysis underscores the importance of our hierarchical
approach in handling complex interactive behaviour. By generating
intermediate sub-goals, SummAct not only distils key information
from different stages of the user actions but also maintains a co-
herent understanding throughout each interaction stage, ensuring
that the final summary encapsulates the overall context.

5 USE CASES OF INTERACTIVE BEHAVIOUR
SUMMARISATION

5.1 Interactive Behaviour Forecasting
Interactive behaviour forecasting is core to anticipatory and proac-
tive interactive systems [57]. Specifically, we conducted the next
action prediction following [58]. Most current next-action predic-
tion methods are based solely on historical information without
explicitly understanding overall goals [19, 29, 59]. The summari-
sation of action history can potentially enhance the next action
prediction by providing contextual information on users’ goal tra-
jectories.

We approached next action prediction as a multi-choice question-
answering task following [11, 20], where each target action includes
two components – the UI element users interact with, like a button
or link, and the operation users apply on this element, like clicking

or typing. The model needs to select from a list of candidate UI
elements that users may interact with and, meanwhile, predict the
corresponding operation. For example, if the predicted action is
𝐵.𝐶𝐿𝐼𝐶𝐾 , this means the user may click on the UI element shown
as the option 𝐵 in the candidate list.

The pipeline includes three steps [13, 61]: First, we summarise
the actions a user has performed using our SummAct. Then, we
employ a candidate extraction method proposed by [13] to filter
and rank UI elements on the current web page and retain the top-𝑘
elements as the candidate targets for the next action. Retaining only
top-𝑘 elements is because the rawHTML contains a large amount of
noisy UI data that can distract LLMs and cause hallucinations [40]
and exceeds the maximum length of allowed input tokens. In our
experiments, we set 𝑘 to 50 [13]. Finally, we fine-tune an LLM to
predict the next action, i.e., selecting the next target UI element out
of the 50 candidates and predicting its corresponding operation out
of three classes (click, select or type). We used the same fine-tuning
set-up as the summarisation, i.e., Mistral-7B as the backbone LLM
and the same learning rate, optimiser and scheduler. We fine-tuned
the model for only three epochs, given its fast convergence. We
required the behaviour history to include at least five past actions to
offer adequate context, consistent with prior next action prediction
works [29, 58]. The prompt for fine-tuning the LLM included these
past actions, the goal summarised by SummAct, and the list of
candidate UI elements (see Appendix B.3).

We compared our results with two baselines, as shown in Table 2.
The first is when only using the action history to compare with and
examine the effectiveness of summaries in next action prediction.
The other is when using the history plus the summary generated by
the ablated version of SummAct excluding the UI element weighting
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Input Cross Domain Cross Task Cross Website
Element Operation Element Operation Element Operation

History 31.2 42.1 34.2 46.2 30.6 40.4
History+Summary (w/o weight) 37.8 45.9 43.8 47.7 34.9 43.9
History+Summary (Full) 46.8 50.5 47.8 54.5 40.1 45.0

Table 2: Next action prediction performance achieved using 1) only behaviour history, 2) behaviour history and summary
generated by SummAct without the UI element weighting mechanism, and 3) behaviour history and summary generated by
SummAct full version. Each action includes the target UI element and the corresponding operation applied on it (click, select
or type). The two metrics are the accuracy of choosing the correct target (Element) and the F1 score of predicting the operation
category (Operation), both in percentage. The best results are shown in bold.

mechanism, to check the specific contribution of keeping UI content
as discussed in Section 3.2. Following [13, 62], we calculated the
accuracy of UI element option, and F1 score of operation category
to measure the imbalanced operation classes. We showcased the
performance of next action prediction on Mind2Web given that
this dataset has more variety of goals and interfaces than MoTIF,
as shown in Section 4.1.

As presented in Table 2, integrating summarised goals consis-
tently enhanced the performance across domains, websites and
tasks, with an average 12.9% higher element accuracy and 7.1%
higher operation F1 score. Moreover, we observed adding the UI
element weighting mechanism improved the element accuracy and
the operation F1 score by 6.1% and 4.2% on average, respectively,
verifying that the UI content preserved by our method was helpful
for next action prediction.

Enhancing next action prediction offers practical benefits for
various interactive scenarios. For instance, the adaptive user inter-
faces can dynamically adjust the layout and functionality or directly
recommend future actions to users to reduce required cognitive
and physical demands and enhance usability [32]. Additionally,
this approach allows automation agents to operate more efficiently
by intuitively responding to user preferences without requiring
explicit task instructions. This potentially leads to smoother, more
personalised interactions adapting to evolving user behaviour.

5.2 Automatic Identification of Behaviour
Synonyms

Besides directly capturing user goals, our summarisation method
can also identify “interactive behaviour synonyms”, which, in our
examples, are alternative action sequences reflecting the same un-
derlying user goal. We used multiple windows of various lengths
from two to the maximum sequence length to segment each input
action sequence into sub-sequences. We identified synonyms from
sub-sequences instead of the full sequence because, in real-world
scenarios, it is common that two long, full sequences are not syn-
onyms (under different overall goals). Still, they may have shared
sub-goals that synonym sub-sequences can capture. On each sub-
sequence, we used SummAct to summarise its underlying goal into
a sentence and used the sentence encoder (the same as Section 4.3)
to compute its sentence embedding. Then, we calculated the cosine

similarity between these sentence embeddings. If the cosine similar-
ity was higher than a threshold, we considered the synonyms of the
two sub-sequences. We set the threshold to 0.7 in our experiments.

Using this approach, we identified three types of synonyms
that can provide interesting insights into interaction strategies and
system usability: 1) when two synonym behaviours are different
but generated from the same UI, the synonyms reflect different
strategies or preferences users can take towards a goal; 2) when
two synonym behaviours are different and generated from different
UIs, the shorter action path indicates better usability; 3) when two
synonym behaviours are generated from different UIs but have
the same actions, this presents that there are common behaviour
patterns or UI designs.

5.2.1 Different behaviours from the same UI. Based on the same
goal on the same UI, users can still generate various behaviours,
showing different user preferences, interaction habits and strategies.
For instance, to add an item to a new shopping list, users could choose
a shorter action path, i.e., creating a new list when adding an item,
or a longer trajectory first navigating to the page showing all the
existing lists, adding a list there, then returning to the item page,
and finally adding the item. In another example, when the goal
was to find a top-rated restaurant in Miami, one behaviour directly
navigated to a page listing all restaurants and then selected the
desired city. In contrast, another user path first identified the city,
browsed a broad range of "things to do", and then narrowed down to
restaurants. These variations may reflect different user preferences,
browsing habits, or the clearness of user goal: the former path
shows that the user may have a straightforward motivation to look
for a restaurant. At the same time, the latter shows that the user
may just look for a place to go in the city, not necessarily for a
restaurant. These synonyms can help designers understand user
preferences and habits, find the optimal interaction strategies, and
design user-tailored interfaces.

5.2.2 Different behaviours from different UIs. UI designs impact
the efficiency of achieving interactive goals, shown by user be-
haviours. Therefore, the length of the synonyms found through
our summarisation can be used as a metric of UI efficiency. Unlike
classical metrics like the keystroke-level model (KLM) that measure
interactive system’s usability via task completion time [18, 22], this
metric will compare UIs via the number of actions required for the
same goal. As shown in Figure 3, to add 𝑁 items into the shopping
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Figure 3: An example of using synonyms to compare UI usability for the task of adding 𝑁 items into the shopping cart. The
Uniqlo website (left) allows users to add multiple items with just three clicks, while the Macy’s website (right) requires one
click per item, leading to more effort and less usability as 𝑁 increases.

cart: the Uniqlo website (left) enables users to directly choose the
total quantity and add all of them to the cart at once, i.e., finishing
with three clicks; while Macy’s (right) only allows adding one item
each time, i.e., with 𝑁 clicks. When 𝑁 has a large value, users on
the latter interface will have to perform many more actions, harm-
ing efficiency and usability. Another example is shown in Figure 4,
where the goal was to search for jobs in a city (Essex in the upper
and London in the lower example). In the upper example, users
only needed three clicks to navigate from the main page to view
all jobs from the city, i.e., Countries →England →Jobs in Essex. On
the contrary, in the lower example, users had to perform more
actions to see the list of jobs, i.e., click on Find a job →click on Start
now→click on the text box under Where→type London→click on
London →click on Search. The reason is that the former website,
Indeed, is specifically designed for job searching, optimising its UI
to streamline this function. In contrast, the latter website, Gov.UK,
serves multiple functions, not focusing primarily on job hunting,
consequently leading to relatively lower efficiency. As such, these
types of synonyms can help UX designers optimise interface design
to facilitate quicker and more intuitive access, such as creating
shortcuts for the interactive goals that are dominant among users.

5.2.3 Same behaviours from different UIs. We found cases where
the synonym behaviours followed the same patterns, although in
different interactive systems. For example, when the goal was to
book a flight ticket from A to B, user behaviours on different inter-
faces, including Kayak, Trip.com, American Airlines, and Expedia,
typically followed a uniform process: users clicked flights, typed
and selected the departure city or airport, and then typed and se-
lected the destination. When making an appointment with a doctor
on various medical platforms such as Zocdoc, Mayoclinic.org and

Healthgrades, users also employed the same procedure: typed and
clicked on the type of specialist, browsed and selected an available
doctor, and finally picked the appointment time.

Such common patterns in interactive behaviour are why our
model can generalise across different websites and tasks (as shown
in Table 1). Understanding these patterns also gives UX designers
intuitive starting points to create a new interface that aligns with
established user behaviour and expectations. This can reduce the
learning curve while ensuring a consistent, friendly user experience.

6 DISCUSSION
6.1 Interactive Behaviour Summarisation
As a first step of summarising input actions into natural language
reflecting interactive goals, our work represents a paradigm shift
in goal modelling. The summarisation, within a familiar linguis-
tic framework, lowers the barrier of interpreting and analysing
interactive behaviour. The open-ended nature of language offers
a more flexible and scalable framework that can 1) eliminate the
exhaustive definition of every possible user goal, 2) allow for recog-
nising unseen, out-of-distribution user goals, which was verified
by the SummAct’s robust performance in the cross-task setting on
Mind2Web (shown in Table 1), and 3) adapt to dynamically evolv-
ing user needs and hence enable continuous learning and system
refinement [51].

The natural language representation also enables language-based
behaviour retrieval that will be helpful in question-answering agents
and conversational user interfaces. For instance, a system stream-
lines the diagnostic process by providing quick access to relevant
troubleshooting steps based on user-provided problem descriptions
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(b) Searching for jobs in London on Gov.UK

Figure 4: An example of using synonyms to compare UI usability for the goal of Searching for jobs in city A. On the upper
interface, the users can finish the task with only three actions; on the lower interface, the users must perform six actions,
indicating worse usability.

and their intended functions. Additionally, when novice users strug-
gle to complete an interactive goal, a system can quickly pull up the
most relevant teaching actions or tutorials from experts for them
to watch and learn.

In addition to its inherent utility, we also demonstrate two exam-
ple use cases enabled by the summary, namely interactive behaviour
forecasting and automatic behaviour synonym identification. Un-
derstanding users’ goals from past actions is important to forecast
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future actions along the goal. Therefore, we enhanced current com-
putational next-action prediction methods based on action history
by adding the summary as an additional input. SummAct’s summari-
sation led to better prediction performance, as shown in Table 1.
These improvements underscore the effectiveness of adding se-
mantic information through interactive behaviour summarisation.
Moreover, if two behaviours have the similar summary, they can
be considered synonyms, i.e., alternatives achieving the same goal.
Synonyms can provide insights into understanding diverse user
preferences and interaction strategies, optimising interactive sys-
tems, and finding common patterns in behaviour and UI designs
across systems.

6.2 Design of SummAct
We propose a novel LLM-based approach, SummAct, that includes
two methodological contributions and design choices to generate
natural language summarisation from user actions and their UI
context. The first design choice is to employ a hierarchical process
adept at handling the complexity and variability of user actions.
The method first enriches the semantic context available for the
final summary generation by producing intermediate sub-goals
from low-level actions. The second design choice is an UI element
weighting mechanism applied on the fine-tuning loss to prevent
over-abstraction by preserving essential context information em-
bedded in the UI elements, such as the meaning of the clicked
button. Extensive quantitative comparisons with ablations showed
that both design choices contribute to the effectiveness of SummAct
(see Table 1). Additionally, in Section 4.4, the qualitative evaluations
examined the generated text and verified that both designs were
necessary and complementary to each other: without the sub-goals,
the summaries can have logical errors, while without the weighted
mechanism, the summaries lacked action details (see Figure 2).

Moreover, as shown in Table 1, our method significantly im-
proves on the results obtained from using pre-trained LLMs (up
to three times better, on MoTIF), which is a common practice in
HCI research that use LLMs [24, 38, 49]. The substantial enhance-
ment brought by SummAct reveals the considerable potential of
further enhancements in these HCI works and positions our ap-
proach as a pioneering example in the field. Our findings suggest
that the HCI community can gain immensely by further adapting
advanced natural language processing techniques to specific HCI
applications.

In implementing SummAct, we utilised Mistral-7B as the back-
bone LLM due to its lightweight and robust performance across
various NLP tasks. However, our SummAct framework allows re-
placing Mistral-7B with other LLM models if computing resources
are available or more powerful models appear, such as GPT-4 [42].

6.3 Limitations and Future Work
In our work, we investigated summarising the interactive behaviour
at the UI-element level, i.e., the users operate on UI elements such as
buttons or combo boxes. In the future, we will dive deeper into the
raw, pixel-level interactive behaviours, e.g., integrating the specific
on-screen locations of each move, click or tap into our model, which
will carry more information about users and their goals [58, 59].

Currently, we integrated UI information via HTML and DOM el-
ements. Future enhancements can adopt vision language models
to process GUI screenshots [31, 62]. This will allow for capturing
visual cues that HTML alone cannot provide, such as iconography,
layout spatial arrangements, and thematic designs that influence
user interactions. The proposed UI element weighting mechanism
matched tokens by considering whether they were identical. Mov-
ing forward, we could consider matching their semantics to increase
the model’s flexibility. This work considered three levels (action,
sub-goal and overall goal) and showed SummAct’s potential of han-
dling noisy behaviour via examples (see Appendix C). Future work
will explore more complex real-world scenarios where the goals
may have more intermediate levels or when users start with vague
goals that are even higher-level than the overall goal, which needs
to be translated into specific goals. Potential solutions may be to
introduce theory of mind [17] and cognitive models [7]. Moreover,
our exploration of interactive behaviour summarisation is based on
the assumption that the observed UI trajectories accurately reflect
user goals without error. While essential for developing our method,
in real-world interactions, it is possible that actions may not always
convey true goals due to errors in user operation, which will be
interesting for developing more robust models in the future.

7 CONCLUSION
In this work, we modelled interactive behaviour from a natural
language viewpoint and investigated a novel interactive behaviour
summarisation task, namely summarising input actions into natural
language descriptions. These descriptions reflect user goals under-
lying their interactive behaviour. Towards this task, we proposed
SummAct – an LLM-based method with two specific designs, hier-
archical summarisation and UI element weighting mechanism. We
evaluated our method on two datasets, covering both desktop and
mobile interactive settings, from both a quantitative and qualitative
perspective. Results demonstrated the effectiveness of our method
in summarising goals and the complementary contributions of our
two designs. We then showcased two example use cases of inter-
active behaviour summarisation, including behaviour forecasting
and automatic identification of behaviour synonyms. The natural
language representation of interactive behaviour can boost the ex-
plainability of computational behaviour modelling and contribute
to developing more intuitive and responsive interactive systems.
Furthermore, the significant improvement over the common prac-
tice of directly using LLMs in HCI suggests large potential benefits
from further adapting advanced NLP techniques to HCI tasks.
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A DESCRIBING MIND2WEB ACTIONS IN
NATURAL LANGUAGE

As mentioned in Section 4.1.1, we preprocessed the raw action
strings provided by Mind2Web into natural language descriptions
to better leverage the understanding and reasoning capabilities
inherent in LLMs and to standardise the input format for SummAct.
Table 3 presents three examples of the original actions, each from
an user operation category (click, select or type).

Following [41], we first split the original action strings to the UI
element category, content (the inherent meaning of this element,
e.g., its name or the text on it), additional content for type and select
operations (specific content the user is interested in, e.g., selected
value from a combo box) and the user operation category; and
then inserted these components into the natural language template,
structured as:

• If 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝐶𝐿𝐼𝐶𝐾 : [𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛] the [𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦] ele-
ment with text “ [𝐶𝑜𝑛𝑡𝑒𝑛𝑡]” on it

• If 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑆𝐸𝐿𝐸𝐶𝑇 : [𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛] “[𝐶𝑜𝑛𝑡𝑒𝑛𝑡 (𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙)]”
from [𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦] with text “ [𝐶𝑜𝑛𝑡𝑒𝑛𝑡]” on it

• If 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑇𝑌𝑃𝐸: [𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛] text “[𝐶𝑜𝑛𝑡𝑒𝑛𝑡 (𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙)]”
into [𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦] with text “[𝐶𝑜𝑛𝑡𝑒𝑛𝑡]” on it

Through this templating approach, the example action strings are
represented as:
• Click the button element with text “Add to Cart” on it
• Select “Price Low to High” from combobox with text “Sort By”
on it

• Type text “Johannesburg” into searchbox with text “Search” on
it

Moreover, Table 4 compared the performance of interactive be-
haviour summarisation by replacing the input actions from the
natural language descriptions (with Preprocessing) with their origi-
nal symbolic representations in the prompt (w/o Preprocessing). The
results of with Preprocessing were the same as the last row from
Table 1. The drop of performance after removing the conversion
demonstrates the effectiveness of this preprocessing.

B PROMPTS
B.1 In-Context Learning Prompts for Sub-goal

Generation
As described in Section 3.1, we apply in-context learning to generate
sub-goals from low-level interactive actions. Figure 5 shows an
example of the prompt we used for the pretrained LLM. The prompt
has threemain components: 1) an overall context describing the task
the LLM needs to solve, the input format and expected output; 2)
examples used in the in-context learning annotated by experts, each
including environment metadata, task (only in training samples),
interactive behaviour and sub-goals (we only show one example due
to its excessive length); 3) and a new sample for which the model
needs to generate sub-goals, where the text in green should be
replaced and updated for each sample. The texts in blue are related
to the ground-truth overall goals, and thus should be removed from
testing samples to avoid data leakage. The example in Figure 5 is
from Mind2Web dataset, which provides the metadata including
website, domain and sub-domain.When using the prompt onMoTIF
dataset, simply replace them with the provided mobile application
as the new meta data.

B.2 Prompts for Detail Enhanced Fine-tuning
As described in Section 3.2, we fine-tune LLMs to summarise the
final, overall goal using both low-level interactive behaviour and
mid-level sub-goals. Figure 6 illustrates an example of the prompt
we used for fine-tuning. The prompt comprises five parts: 1) an
overall context describing the task the LLM needs to solve, the
input format and expected output; 2) environment metadata; 3)
user input actions; 4) sub-goals; and 5) expected output format. The
text in green should be replaced and updated for each sample. The
example in Figure 6 is from Mind2Web dataset, which provides
the metadata including website, domain and sub-domain. When
using the prompt on MoTIF dataset, simply replace them with the
provided mobile application as the metadata.
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Element
Category

Element
Content

User
Operation

Element
Content (Additional)

[𝑏𝑢𝑡𝑡𝑜𝑛] Add to Cart → CLICK –
[𝑐𝑜𝑚𝑏𝑜𝑏𝑜𝑥] Sort By → SELECT Price Low to High
[𝑠𝑒𝑎𝑟𝑐ℎ𝑏𝑜𝑥] Search → TYPE Johannesburg

Table 3: Three example input action strings from Mind2Web dataset. Every string, representing an input action, contains the
information of the interacted UI element (category and content) and user’s operation on it.

Method Metric Cross Domain Cross Task Cross Website

w/o Preprocessing

CosSim .733 .762 .769
BLEU .393 .410 .419
ROUGE .379 .416 .393
METEOR .342 .385 .399

with Preprocessing

CosSim .755 .796 .802
BLEU .406 .453 .445
ROUGE .390 .432 .447
METEOR .376 .430 .454

Table 4: Interactive behaviour summarisation results achieved by SummAct on Mind2Web without (w/o) or with preprocessing.
Without preprocessing, the actions in the input follow their original symbolic representations, while after preprocessing, these
actions are described in natural language. Better results are shown in bold.

B.3 Prompts for Next Action Prediction
As described in Section 5.1, we fine-tune an LLM to predict the next
action a user may perform based on the history actions and the
goals summarised from them via our SummAct. Figure 7 shows
an example of this prompt, consisting of five parts: 1) an overall
context describing the task the LLM needs to solve and the allowed
action space; 2) input actions the user has performed; 3) DOM of
the current webpage; 4) interactive goal summarised from the per-
formed actions; and 5) candidate UI elements as the next target. The
text in green should be replaced and updated for each sample. We
formulate this task as a multi-choice question-answering problem,
where the model needs to output both the target UI element to
interact with and the user’s corresponding operation. An example
output is:
[ANSWER] B. Action: CLICK [/ANSWER]

which means the predicted next action is clicking on the UI element
shown as the option B in the input prompt.

C SUMMARISATION EXAMPLES ON NOISY
ACTIONS

The interaction traces provided by the datasets were clean, while
in real-world interactions, the traces may be less structured and
include redundant actions. We manually added actions to the origi-
nal action sequences and then let SummAct summarise the noisy
sequences. We observed that SummAct could still generate the cor-
rect summaries, i.e., ignoring the redundant actions. For example,
when the overall goal was to Find pet food for cats and sort the
results by price, least to most expensive and from Chewy.com, the
original actions included choosing cat food in the combobox named
"What are you looking for?", clicking on "Price - low to high" to

rank the items, and selecting "Chewy.com". Before the first action
of choosing cat food, we added a redundant action of choosing
dog food to simulate that the user browsed another category but
then decided to operate on the results of cat food. Our SummAct
generated the same goal as the clean interaction trace as expected.
Another example is, towards the goal to Check permit availability
for a group of 4 in Brooks Camp on May 22, one action was typing
4 in the text box of Number of People. We added noisy actions of
typing other numbers into this text box before this action, but our
SummAct was able to recognise that the goal was related to four
people. These example observations indicate the potential of ex-
tending SummAct to complex, noisy user behaviours in real-world
applications.
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You are a helpful computer task assistant. You can break any high-level tasks that can be performed in graphical user interfaces into sub-goals. The 
user will provide the interface to be used, the domain and subdomain of the interface. Along with these general information, the user will also 
provide the task they intend to achieve and the actions they perform towards this task.

You have to analyse the given information and create a list of sub-goals. Each sub-goal should be a summary for several actions, which means the 
number of sub-goals should be more than 1 and less than the number of actions. The sub-goals should together lead to the final task. The following 
are examples of generating such lists of sub-goals.

## Example 1 ##
# INPUT #
Website: exploretock
Domain: Travel
Sub-domain: Restaurant
Task: Check for pickup restaurant available in Boston, NY on March 18, 5pm with just one guest.
Actions (Each line is one action):
- Select "Pickup" from combobox with text "Reservation type" on it
- Type text "Boston" into searchbox with text "Find a location" on it
- Click the span element with text "Boston" on it
- Click the button element with text "18" on it
- Select "5 00 PM" from combobox with text "Time" on it
- Click the span element with text "2 guests" on it
- Select "1 guest" from combobox with text "Size" on it
- Click the button element with text "Update search" on it

# OUTPUT #
Sub-goals (Each line is one sub-goal):
- Set the reservation type to “Pickup”.
- Enter “Boston" as the location.
- Select the reservation date and time to March 18, 5pm.
- Adjust the number of guests to 1.
...... 

# INPUT #
Website: exploretock
Domain: Travel
Sub-domain: Car rental
Task: Sign Allan Smith for email offers with the email allan.smith@gmail.com and zip code 10001
Actions (Each line is one action):
- Click the a element with text "Return to a different location" on it’, 
- Type text "Allan" into textbox with text "First Name (required)" on it’,
- Type text "Smith" into textbox with text "Last Name (required)" on it’,
- Type text "allan.smith@gmail.com" into textbox with text "Email Address (required)" on it’, 
- Type text "allan.smith@gmail.com" into textbox with text "Confirm Email Address (required)" on it’,
- Type text "10001" into textbox with text "ZIP Code (required)" on it’,
- Click the button element with text "Submit" on it'

# OUTPUT #

Overall context

Example demonstra2ons

New sample for which the model needs to generate sub-goals

Environment metadata

Interactive Behaviour

Sub-goals

Figure 5: Prompt used to generate sub-goals using in-context learning.
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Your task is to understand and summarize a user's intention behind their actions on a user interface. You have a
list of information, including the website, domain and sub-domain of the user interface, history actions the user 
performed, and sub-goals (several low-level summarizations of subsets of history actions). Combine all the 
information and summarize the intention.

## Website:
dmv.virginia.gov

## Domain:
Service

## Sub-domain:
Government

## Actions (Each line is one action):
- Click the link element with text "Locations" on it
- Click the link element with text "DMV'S MOBILE OFFICES" on it
- Click the link element with text "View Calendar by Location" on it
- Click the button element with text "Location" on it
- Click the link element with text "HIGHLAND" on it

## Sub-goals summarized from these actions:
- Go to DMV Locations page.
- Open Mobile Offices calendar view.
- Filter the locations based on Highland area.

# Instructions:
## Summarize:
In clear and concise language, summarize the comprehensive goal the user wants to achieve via the history 
actions. Present the summary after the heading [SUMMARY].

Overall context

Environment metadata

Interactive Behaviour

Sub-goals

Expected output format

Figure 6: Prompt used to summarise the overall goal from low-level interactive behaviour and mid-level sub-goals.

You are an agent in a web-based environment. Your task is to predict the user's next ac:on within the given ac:on space, based on the user's previous 
ac:ons, the DOM of the current webpage, and inten:on so far.
# Ac:on space:
1. `CLICK': Click on an element.
2. `TYPE [value]': Type a value into an element.
3. `SELECT [value]': Select a value for an element.

# Previous ac:ons (Each line is one ac:on):
- Click the buUon element with text Hotel on it
- Click the buUon element with text Restaurant on it
- Select Pickup from combobox with text Reserva:on type on it
- Type text New into searchbox with text Find a loca:on on it
- Click the span element with text New York on it

# DOM:
(html (div (div (div (p DELICIOUS ) (p id=0 STARTS ) (p HERE. ) ) (div (label id=1 Reserva:on type ) (div (label id=2 Date ) (div (input text date thu, mar 16 
) (div id=3 (buUon buUon date, selected value is thu, (svg) ) ) ) ) ) ) (a id=4 (div img image of hilton alumni associa:on ) (sec:on (h3 Hilton Alumni 
Associa:on ) (p Hilton, NY Non-culinary ) ) ) ) ) ...

# User inten:on so far: Check for pickup restaurant available in New York.

What should be the next ac:on? Please select from the following choices by selec:ng the leUer that iden:fies the correct choice. (If the correct ac:on 
is not in the page above, please select A. 'None of the above'):
A. None of the above
B. (p id=0 STARTS )
C. (label id=1 Reserva:on type )
D. (label id=2 Date )
E. (div id=3 (buUon buUon date, selected value is thu, (svg) ) )
F. (a id=4 (div img image of hilton alumni associa:on ) ) ...

Write your answer as: [ANSWER] your final answer [/ANSWER]

Overall context

Mul/-choice ques/on

Previous ac/ons

DOM of current webpage

Summary of previous actions

Figure 7: Prompt used to predict the next action based on previous input actions and the current web page.
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